• [1]
    Gross, C.A. (1996) Function and regulation of heat shock proteins. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhart, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), 2nd edn., Vol. 1, pp. 1382–1399. American Society of Microbiology, Washington, DC.
  • [2]
    Hartl, F.-U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571580.
  • [3]
    Netzer, W.J., Hartl, F.-U. (1998) Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci. 23, 6873.
  • [4]
    Miller, C.G. (1996) Protein degradation and proteolytic modification. In: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Neidhart, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), 2nd edn., Vol. 1, pp. 938–954. American Society of Microbiology, Washington, DC.
  • [5]
    Chung, C.H. (1993) Proteases in Escherichia coli. Science 262, 372374.
  • [6]
    Yura, T., Nagai, H., Mori, H. (1993) Regulation of the heat-shock response in bacteria. Annu. Rev. Microbiol. 47, 321350.
  • [7]
    VanBogelen, R.A., Acton, M.A., Neidhardt, F.C. (1987) Induction of the heat shock regulon does not produce the themotolerance in Escherichia coli. Genes Dev. 1, 525531.
  • [8]
    Arrigo, A.P. and Randry, J. (1994) Expression and function of the low-molecular-weight heat shock proteins. In: The Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto, R.I., Tissiéres, A. and Georgopoulos, C., Eds.), pp. 335–373. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • [9]
    Jakob, U., Gaestel, M., Engel, K., Buchner, J. (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 15171520.
  • [10]
    Merck, K.B., Groenen, P.J.T.A., Voorter, C.E.M., de Haard Hoekman, W.A., Horwitz, J., Bloemendal, H., de Jong, W.W. (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat shock-protein. A family of chaperones. J. Biol. Chem. 268, 10461052.
  • [11]
    Caspers, G.-J., Leunissen, J.A.M., de Jong, W.W. (1995) The expanding small heat shock protein family, and structure predictions of the conserved ‘α-crystallin domain’. J. Mol. Evol. 40, 238248.
  • [12]
    Chang, Z., Primm, T.P., Jakana, J., Lee, I.H., Seryaheva, I., Chiu, W., Gilbert, H.F., Quiocho, F.A. (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271, 72187223.
  • [13]
    Lee, G.J., Roseman, A.M., Saibil, H.R., Vierling, E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659671.
  • [14]
    Ehrnsperger, M., Gräber, S., Gaestel, M., Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221229.
  • [15]
    Mehlen, P., Briolay, J., Smith, L., Diaz-latoud, C., Fabre, N., Pauli, D., Arrigo, A.P. (1993) Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild-type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur. J. Biochem. 215, 277284.
  • [16]
    van der IJssel, P.R., Overkamp, P., Knauf, U., Gaestel, M., de Jong, W.W. (1994) αA-crystallin confers cellular thermoresistance. FEBS Lett. 355, 5456.
  • [17]
    Miyake, T., Araki, S., Tsuchido, T. (1993) Synthesis and sedimentation of a subset of 15kDa heat shock proteins in Escherichia coli cells recovering from sublethal heat stress. Biosci. Biotechnol. Biochem. 57, 578583.
  • [18]
    Allen, S.P., Polazzi, J.O., Gierse, J.K., Easton, A.M. (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 69386947.
  • [19]
    Thomas, J.G., Baneyx, F. (1998) Role of the Escherichia coli small heat shock proteins IbpA and IbpB in the thermal stress management: comparison with ClpA, ClpB and HtpG in vivo. J. Bacteriol. 180, 51655172.
  • [20]
    Studier, F.W., Rosenberg, A.H., Dunn, J.J., Dubendorff, J.W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 5987.
  • [21]
    Neidhardt, F.C., VanBogelen, R.A. (1981) Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Biochem. Biophys. Res. Commun. 100, 894900.
  • [22]
    Yanisch, P.C., Vieira, J., Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33, 103119.
  • [23]
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • [24]
    Tsuchido, T., Aoki, I., Takano, M. (1989) Interaction of the fluorescent dye 1-N-phenylnaphthylamine with Escherichia coli cells during heat stress and recovery from heat stress. J. Gen. Microbiol. 135, 19411947.
  • [25]
    Mullis, K.B., Faloona, F. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335350.
  • [26]
    Chung, S.-E., Burland, V., G. Plunkett, III, Daniels, D.L., Blattner, F.R. (1992) Sequence analysis of four new heat-shock genes constituting the ibpAB and hslVU operons in Escherichia coli. Gene 134, 16.
  • [27]
    Kokotek, W., Lotz, W. (1989) Construction of LacZ-kanamycin resistance cassette, useful for site-directed mutagenesis and as promotor probe. Gene 84, 467471.
  • [28]
    Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P., Kushner, S.R. (1989) New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 46174622.
  • [29]
    O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 40074021.
  • [30]
    Laemmli, U.K. (1970) Cleavage of structural proteins during assembly of the heated of bacteriophage T4. Nature 227, 680685.
  • [31]
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265275.
  • [32]
    Bardwell, J.C.A., Craig, E. (1988) Ancient heat shock gene is dispensable. J. Bacteriol. 170, 29772983.
  • [33]
    Petko, L., Lindquist, S.L. (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45, 885894.
  • [34]
    Susek, R.E., Lindquist, S.L. (1989) Hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is not without a demonstrable function. Mol. Cell. Biol. 9, 52655271.
  • [35]
    Veinger, L., Diamant, S., Bucher, J., Goloubinoff, P. (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 1103211037.
  • [36]
    Arrigo, A.P. (1998) Small stress proteins: chaperone that act as regulators of intracellular redox state and programmed cell death. Biol. Chem. 379, 1926.
  • [37]
    Jakob, U., Muse, W., Eser, M., Bardwell, J.C.A. (1999) Chaperone activity with a redox switch. Cell 96, 341352.
  • [38]
    Zavialov, A.V., Gaestel, M., Korpela, T., Zav'yalov, V.P. (1998) Thio/disulfide exchange between small heat shock protein 25 and glutathione. Biochim. Biophys. Acta 1388, 123132.
  • [39]
    Privalle, C.T., Fridovich, I. (1987) Induction of superoxide dismutase in Escherichia coli by heat shock. Proc. Natl. Acad. Sci. USA 84, 27232726.
  • [40]
    VanBogelen, R.A., Kelley, P.M., Neidhardt, F.C. (1987) Differential induction of heat shock, SOS, and oxidative stressregulon and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169, 2632.