• [1]
    Kuriki, T., Okada, S., Imanaka, T. (1988) New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J. Bacteriol. 170, 15541559.
  • [2]
    Aoki, H., Sakano, Y. (1997) Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642. Biochem. J. 323, 757764.
  • [3]
    Bertoldo, C., Duffner, F., Antranikian, G. (1999) Pullulanase type I from Fervidobacterium pennavorans Ven5: Cloning, sequencing and expression of the gene and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 65, 20842091.
  • [4]
    Rüdiger, A., Jorgensen, P.L., Antranikian, G. (1995) Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl. Environ. Microbiol. 61, 567575.
  • [5]
    Erra-Pujada, M., Debeire, P., Duchiron, F., O'Donohue, M.J. (1999) The type II pullulanase of Thermococcus hydrothermalis: Molecular characterization of the gene and expression of the catalytic domain. J. Bacteriol. 181, 32843287.
  • [6]
    Svensson, B. (1994) Protein engineering of the α-amylase family: catalytic mechanism, substrate specificity and stability. Plant Mol. Biol. 25, 141157.
  • [7]
    Sakano, Y., Fukushima, J., Kobayashi, T. (1983) Hydrolysis of α-1,4- and α-1,6-glycosidic linkages in trisaccharides by the Thermoactinomyces vulgarisα-amylases. Agric. Biol. Chem. 47, 22112216.
  • [8]
    Kuriki, T., Takata, T., Okada, S., Imanaka, T. (1991) Analysis of the active center of Bacillus stearothermophilus neopullulanase. J. Bacteriol. 173, 61476152.
  • [9]
    Canganella, F., Jones, W.J., Gambacorta, A., Antranikian, G. (1997) Biochemical and phylogenetic characterization of two novel deep-sea Thermococcus isolates with potential biotechnological applications. Arch. Microbiol. 167, 233238.
  • [10]
    Ramakrishnan, V. and Adams, M.W.W. (1995) Preparation of genomic DNA from sulphur-dependent hyperthermophilic archaea. In: Archaea – A Laboratory Manual: Thermophiles (Robb, F.T. and Place, A.R., Eds.), pp. 92–93. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [11]
    Bernfeld, P. (1955) Amylases α and β. Methods Enzymol. 1, 149155.
  • [12]
    Furegon, L., Curioni, A., Peruffo, D.B.A. (1994) Direct detection of pullulanase activity in electrophoretic polyacrylamide gels. Anal. Biochem. 221, 200201.
  • [13]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • [14]
    van der Oost, J., Ciaramella, M., Moracci, M., Pisani, F.M., Rossi, M., de Vos, W.M. (1997) Molecular biology of hyperthermophilic archaea. Adv. Biochem. Eng./Biotechnol. 61, 87115.
  • [15]
    Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 16.
  • [16]
    Henrissat, B., Davies, G. (1997) Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637644.
  • [17]
    Kuriki, T., Imanaka, T. (1989) Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J. Gen. Microbiol. 178, 15211528.
  • [18]
    Ibuka, A., Tonozuka, T., Matsuzawa, H., Sakai, H. (1998) Conversion of neopullulanase-α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanase-type enzyme. J. Biochem. 123, 275282.