• [1]
    Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M. (1995) Microbial biofilms. Annu. Rev. Microbiol. 49, 711745.
  • [2]
    Ridgway, H.F., Kelly, A., Justice, C., Olson, B.H. (1983) Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: chemical, bacteriological, and ultrastructural analyses. Appl. Environ. Microbiol. 45, 10661084.
  • [3]
    Okabe, S., Satoh, H., Watanabe, Y. (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 31823191.
  • [4]
    McLean, R.J.C., Whiteley, M., Hoskins, B.C., Majors, P.D., Sharma, M.M. (1999) Laboratory techniques for studying biofilm growth, physiology, and gene expression in flowing systems and porous media. Methods Enzymol. 310, 248264.
  • [5]
    McLean, R.J.C., Hussain, A.A., Sayer, M., Vincent, P.J., Hughes, D.J., Smith, T.J.N. (1993) Antibacterial activity of multilayer silver copper surface films on catheter material. Can. J. Microbiol. 39, 895899.
  • [6]
    Virta, M., Lineri, S., Kankaanpä?, P., Karp, M., Peltonen, K., Nuutila, J., Lilius, E.-M. (1998) Determination of complement-mediated killing of bacteria by viability staining and bioluminescence. Appl. Environ. Microbiol. 64, 515519.
  • [7]
    Amy, P.S., Haldeman, D.L., Ringelberg, D., Hall, D.H., Russell, C. (1992) Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface. Appl. Environ. Microbiol. 58, 33673373.
  • [8]
    Klaus, D., Simske, S., Todd, P., Stodieck, L. (1997) Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143, 449455.
  • [9]
    Kacena, M.A., Leonard, P.E., Todd, P., Luttges, M.W. (1999) Low gravity and inertial effects on the growth of E. coli and B. subtilis in semi-solid media. Aviat. Space Environ. Med. 68, 11041108.
  • [10]
    Horneck, G., Rettberg, P., Kozubek, S., Baumstark-Khan, C., Rink, H., Schafer, M., Schmitz, C. (1997) The influence of microgravity on repair of radiation-induced DNA damage in bacteria and human fibroblasts. Radiat. Res. 147, 376384.
  • [11]
    Harada, K., Sugahara, T., Ohnishi, T., Ozaki, Y., Obiya, Y., Miki, S., Miki, T., Imamura, M., Kobayashi, Y., Watanabe, H., Akashi, M., Furusama, Y., Mizuma, N., Yamanaka, H., Ohashi, E., Yamaoka, C., Yajima, M., Fukui, M., Nakano, T., Takahashi, S., Amano, T., Sekikawa, K., Yanagawa, K., Nagaoki, S. (1998) Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phase I program of NASA Shuttle/Mir mission no. 6. Int. J. Mol. Med. 1, 817822.
  • [12]
    Nickerson, C.A., Ott, C.M., Mister, S.J., Morrow, B.J., Burns-Keliher, L., Pierson, D.L. (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar typhimurium virulence. Infect. Immun. 68, 31473152.