• [1]
    Kubo, I, Matsumoto, A, Takase, I (1985) A multichemical defense mechanism of bitter olive Olea europaea (Oleaceae). Is oleuropein a phytoalexin precursor. J. Chem. Ecol. 11, 251263.
  • [2]
    Ingham, J.L. (1978) Disease resistance in plants: the concept of pre-infectional and post-infectional resistance. Phytopath. Z. 78, 314335.
  • [3]
    Capasso, R, Evidente, A, Schivo, L, Orru, G, Marcialis, M.A., Cristinzio, G (1995) Antibacterial polyphenols from olive oil mill waste waters. J. Appl. Bacteriol. 79, 393398.
  • [4]
    Ghisalberti, E.L. (1998) Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 5, 147163.
  • [5]
    Ruiz-Barba, J.L., Garrido-Fernandez, A, Jimenez-Diaz, R (1991) Bactericidal action of oleuropein extracted from green olives against Lactobacillus plantarum. Lett. Appl. Microbiol. 12, 6568.
  • [6]
    Tassou, C.C., Nychas, G.J.E. (1995) Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system. Lett. Appl. Microbiol. 20, 120124.
  • [7]
    Tranter, H.S., Tassou, S.C., Nychas, G.J. (1993) The effect of the olive phenolic compound, oleuropein, on growth and enterotoxin B production by Staphylococcus aureus. J. Appl. Bacteriol. 74, 253259.
  • [8]
    Bisignano, G, Tomaino, A, Lo Cascio, R, Crisafi, G, Uccella, N, Saija, A (1999) On the ‘in vitro’ antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 51, 971974.
  • [9]
    Kubo, J, Lee, J.R., Kubo, I (1999) Anti-Helicobacter pylori agents from the cashew apple. J. Agric. Food Chem. 47, 533537.
  • [10]
    Kubo, A, Lunde, C.S., Kubo, I (1995) Antimicrobial activity of the olive oil flavor compounds. J. Agric. Food Chem. 43, 16291633.
  • [11]
    National Committee for Clinical Laboratory Standards (1991) Performance standards for antimicrobial susceptibility testing. NCCLS document M100-S3, Villanova, PA.
  • [12]
    Bauer, S.W., Kirby, W.M., Sherris, J.C., Thurck, M (1996) Antibiotic susceptibility testing by a standardized single disc method. Am. J. Pathol. 45, 493496.
  • [13]
    Sahm, D.F. and Washington, J.A. (1991) Susceptibility tests: microdilution and macrodilution broth procedures. In: Manual of Clinical Microbiology, 5th edn. (Balows, W., Hausler, J. Jr., Herrman, K.L. and Shadomy, H.J., Eds.), pp. 1105–1116. American Society of Microbiology, Washington, DC.
  • [14]
    Cowan, M.M. (1999) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564582.
  • [15]
    Harborne, J.B. (1989) Plant Phenolics, pp. 23–53. Academic Press, London.
  • [16]
    Conner, D.E. (1993) Naturally occurring compounds. In: Antimicrobials in Food, 2nd edn. (Davidson, P.M. and Branen, A.L., Eds.), pp. 441–467. Marcel Dekker, Inc., NY.
  • [17]
    Ramos-Nino, M.E., Ramirez-Rodriguez, C.A., Clifford, M.N., Adams, M.R. (1998) QSARs for the effect of benzaldehydes on foodborne bacteria and the role of sulphydryl groups as targets of their antibacterial activity. J. Appl. Microbiol. 84, 207212.
  • [18]
    Walsh, S.E., Maillard, J.Y., Simons, C, Russell, A.D. (1999) Studies on the mechanisms of the antibacterial action of ortho-phthalaldehyde. J. Appl. Bacteriol. 87, 702710.
  • [19]
    Ramos-Nino, M.E., Clifford, M.N., Adams, M.R. (1996) Quantitative structure activity relationships for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes. J. Appl. Bacteriol. 80, 303310.
  • [20]
    Kubo, I, Muroi, H, Himejima, M, Kubo, A (1993) Antibacterial activity of long-chain alcohols: the role of hydrophobic alkyl groups. Bioorg. Med. Chem. Lett. 3, 13051308.
  • [21]
    Kubo, J, Kinst-Hori, I (1999) Tyrosinase inhibitory activity of the olive oil flavor compounds. J. Agric. Food Chem. 47, 45744578.
  • [22]
    Herruzo-Cabrera, R, Uriarte, M.C., Rey-Calero, J (1999) Antimicrobial effectiveness of 2% glutaraldehyde versus other disinfectants for hospital equipment, an in vitro test based on germ carriers with a high microbial contamination. Rev. Stomatol. Chir. Maxillofac. 6, 299305.