• [1]
    Kelly, D.P., Shergill, J.K., Lu, W.-P, Wood, A.P. (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71, 95107.
  • [2]
    Brune, D.C. (1995) Sulfur compounds as photosynthetic electron donors. In: Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T. and Bauer, C.E., Eds.), pp. 847–870. Kluwer Academic Publishers, Dordrecht.
  • [3]
    Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A. and Fischer, J. (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol. in press.
  • [4]
    Rainey, F.A., Kelly, D.P., Stackebrandt, E, Burghardt, J, Hiraishi, A, Katayama, Y, Wood, A.P. (1999) A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int. J. Syst. Bacteriol. 49, 645651.
  • [5]
    Friedrich, C.G., Quentmeier, A, Bardischewsky, F, Rother, D, Kraft, R, Kostka, S, Prinz, H (2000) Novel genes coding for lithotropic sulfur oxidation in Paracoccus pantotrophus GB17. J. Bacteriol. 182, 46774687.
  • [6]
    Rother, D., Henrich, H.J., Quentmeier, A., Bardischewsky, F. and Friedrich, C.G. (2001) Novel genes of sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for general sulfur oxidizing system in Paracoccus pantotrophus GB17. J. Bacteriol. in press.
  • [7]
    Schneider, K, Schlegel, H.G. (1977) Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch. Microbiol. 112, 229238.
  • [8]
    Thöny-Meyer, L (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev. 61, 337376.
  • [9]
    Bardischewsky, F, Friedrich, C.G. (2001) Identification of ccdA in Paracoccus pantotrophus GB17: disruption of ccdA causes complete deficiency in c-type cytochromes. J. Bacteriol. 183, 257263.
  • [10]
    Chandra, T.S., Friedrich, C.G. (1986) Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J. Bacteriol. 166, 446452.
  • [11]
    Sambrook, J., Maniatis, T. and Fritsch, E.F. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [12]
    Friedrich, C.G., Bowien, B, Friedrich, B (1979) Formate and oxalate metabolism in Alcaligenes eutrophus. J. Gen. Microbiol. 115, 185192.
  • [13]
    Quentmeier, A, Kraft, R, Kostka, S, Klockenkämper, R, Friedrich, C.G. (2000) Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch. Microbiol. 173, 117125.
  • [14]
    Kortlüke, C, Horstmann, K, Schwartz, E, Rohde, M, Binsack, R, Friedrich, B (1992) A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16. J. Bacteriol. 174, 62776289.
  • [15]
    Lorenz, B, Schneider, K, Kratzin, H, Schlegel, H.G. (1989) Immunological comparison of subunits isolated from various hydrogenases of aerobic hydrogen bacteria. Biochim. Biophys. Acta 995, 19.
  • [16]
    S?rb?, B (1957) A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta 23, 412416.
  • [17]
    Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • [18]
    Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1994) Current Protocols in Molecular Biology. Wiley and Sons, New York.
  • [19]
    Altschul, S.F., Gish, W, Miller, W, Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403410.
  • [20]
    Martin, J.L. (1995) Thioredoxin – a fold for all reason. Structure 3, 245250.
  • [21]
    Wodara, C, Bardischewsky, F, Friedrich, C.G. (1997) Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J. Bacteriol. 179, 50145023.
  • [22]
    Egert, M, Hamann, A, Kömen, R, Friedrich, C.G. (1993) Methanol and methylamine utilization result from mutational events in Thiosphaera pantotropha. Arch. Microbiol. 159, 364371.
  • [23]
    Stewart, E.J., Katzen, F, Beckwith, J (1999) Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18, 59635971.
  • [24]
    Fabianek, R.A., Hennecke, H, Thöny-Meyer, L (2000) Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol. Rev. 24, 303316.
  • [25]
    Simon, R, Priefer, U, Pühler, A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1, 784790.
  • [26]
    Bullock, W.O., Fernandez, J.M., Short, J.M. (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strains with beta-galactosidase selection. BioTechniques 5, 376378.
  • [27]
    Altenbuchner, J, Viell, P, Pelletier, I (1992) Positive selection vector based on palindromic DNA sequences. Methods Enzymol. 216, 457566.
  • [28]
    Rémy, F, Frey, J, Krisch, H (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52, 147154.