• [1]
    Fraenkel, D.G., Vinopal, R.T. (1973) Carbohydrate metabolism in bacteria. Annu. Rev. Microbiol. 27, 69100.
  • [2]
    Wiechert, W. (2001) 13C metabolic flux analysis. Metab. Eng. 3, 195206.
  • [3]
    Szyperski, T. (1998) 13C-NMR, MS and metabolic flux balancing in biotechnological research. Q. Rev. Biophys. 31, 41106.
  • [4]
    Sauer, U., Szyperski, T. and Bailey, J.E. (2000) Future trends in complex microbial reaction studies. In: NMR in Microbiology: Theory and Applications (Barbotin, J.-N. and Portais, J.-C., Eds.), pp. 479–490. Horizon Scientific Press, Wymondham.
  • [5]
    Szyperski, T. (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids: an efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433448.
  • [6]
    Szyperski, T., Glaser, R.W., Hochuli, M., Fiaux, J., Sauer, U., Bailey, J.E., Wüthrich, K. (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C-labeling and two-dimensional NMR spectroscopy. Metab. Eng. 1, 189197.
  • [7]
    Maaheimo, H., Fiaux, J., Çakar, Z.P., Bailey, J.E., Sauer, U., Szyperski, T. (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur. J. Biochem. 268, 24642479.
  • [8]
    Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T., Wüthrich, K. (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15, 448452.
  • [9]
    Sauer, U., Lasko, D.R., Fiaux, J.M.H., Glaser, R., Szyperski, T., Wüthrich, K., Bailey, J.E. (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181, 66796688.
  • [10]
    Gottschalk, G. (1986) Bacterial Metabolism. Springer-Verlag, New York.
  • [11]
    Böhringer, J., Fischer, D., Mosler, G., Hengge-Aronis, R. (1995) UDP-glucose is a potential intracellular signal molecule in the control of expression of σs and σs-dependent genes in Escherichia coli. J. Bacteriol. 177, 413422.
  • [12]
    Fraenkel, D.G., Levisohn, S.R. (1967) Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglocose isomerase. J. Bacteriol. 93, 15711578.
  • [13]
    Park, S.M., Sinskey, A.J., Stephanopoulos, G. (1997) Metabolic and physiological studies of Corynebacterium glutamicum. Biotechnol. Bioeng. 55, 864879.
  • [14]
    Dauner, M., Sauer, U. (2001) Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol. Bioeng. 76, 132143.
  • [15]
    Allenza, P., Lessie, T.G. (1982) Pseudomonas cepacia mutants blocked in the Entner Doudoroff pathway. J. Bacteriol. 150, 13401347.
  • [16]
    Glaser, R. (1999) FCAL 2.3.0.
  • [17]
    Boonstra, B., French, C.E., Wainwright, I., Bruce, N.C. (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J. Bacteriol. 181, 10301034.
  • [18]
    Clarke, D.M., Loo, T.W., Gillam, S., Bragg, P.D. (1986) Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur. J. Biochem. 158, 647653.
  • [19]
    Hanson, R.L., Rose, C. (1980) Effects of insertion mutation in a locus affecting pyridine nucleotide transhydrogenase (pnt::Tn5) on the growth of Escherichia coli. J. Bacteriol. 141, 401404.