SEARCH

SEARCH BY CITATION

References

  • [1]
    St. Louis, M.E., Morse, D.L., Potter, M.E., DeMelfi, T.M., Guzewich, J.J., Tauxe, R.V., Blake, P.A. (1988) The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis [see comments]. J. Am. Med. Assoc. 259, 21032107.
  • [2]
    Timoney, J.F., Shivaprasad, H.L., Baker, R.C., Rowe, B (1989) Egg transmission after infection of hens with Salmonella enteritidis phage type 4. Vet. Rec. 125, 600601.
  • [3]
    Allen-Vercoe, E, Woodward, M.J. (1999) The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J. Med. Microbiol. 48, 771780.
  • [4]
    Allen-Vercoe, E, Sayers, A.R., Woodward, M.J. (1999) Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. Epidemiol. Infect. 122, 395402.
  • [5]
    Lockman, H.A., Curtiss, R.D. (1990) Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect. Immun. 58, 137143.
  • [6]
    Shivaprasad, H.L. (2000) Fowl typhoid and pullorum disease [in process citation]. Rev. Sci. Tech. 19, 405424.
  • [7]
    Gardel, C.L., Mekalanos, J.J. (1996) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64, 22462255.
  • [8]
    Allison, C, Lai, H.C., Hughes, C (1992) Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol. Microbiol. 6, 15831591.
  • [9]
    Flanary, P.L., Allen, R.D., Dons, L, Kathariou, S (1999) Insertional inactivation of the Listeria monocytogenes cheYA operon abolishes response to oxygen gradients and reduces the number of flagella. Can. J. Microbiol. 45, 646652.
  • [10]
    Galan, J.E. (1996) Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20, 263271.
  • [11]
    Collazo, C.M., Galan, J.E. (1997) The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol. Microbiol. 24, 747756.
  • [12]
    Guard-Petter, J, Lakshmi, B, Carlson, R, Ingram, K (1995) Characterization of lipopolysaccharide heterogeneity in Salmonella enteritidis by an improved gel electrophoresis method. Appl. Environ. Microbiol. 61, 28452851.
  • [13]
    Guard-Petter, J (1998) Variants of smooth Salmonella enterica serovar Enteritidis that grow to higher cell density than the wild type are more virulent. Appl. Environ. Microbiol. 64, 21662172.
  • [14]
    Guard-Petter, J (1997) Induction of flagellation and a novel agar-penetrating flagellar structure in Salmonella enterica grown on solid media: possible consequences for serological identification. FEMS Microbiol. Lett. 149, 173180.
  • [15]
    Guard-Petter, J, Keller, L.H., Rahman, M.M., Carlson, R.W., Silvers, S (1996) A novel relationship between O-antigen variation, matrix formation, and invasiveness of Salmonella enteritidis. Epidemiol. Infect. 117, 219231.
  • [16]
    Parker, C.T., Liebana, E., Henzler, D.J. and Guard-Petter, J. (2001) Lipopolysaccharide O-antigen microheterogeneity of Salmonella serotypes Enteritidis and Typhimurium. Environ. Microbiol., to appear.
  • [17]
    Kutsukake, K (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254, 440448.
  • [18]
    Davis, R.W., Botstein, D. and Roth, J.R. (1980) Advanced Bacterial Genetics: A Manual for Genetic Engineering. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [19]
    Liebana, E., Garcia-Migura, L., Guard-Petter, J., McDowell, S., Rankin, S., Opitz, M. and Davies, R.H. (2001) Salmonella enterica sero-type Enteritidis phage types 4, 7, 6, 8, 13a, 29, and 34: A comparative analysis of genomic fingerprints from geographically distant isolates. J. Appl. Microbiol., in press.
  • [20]
    Pruss, B.M., Matsumura, P (1996) A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J. Bacteriol. 178, 668674.
  • [21]
    Pruss, B.M., Markovic, D, Matsumura, P (1997) The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J. Bacteriol. 179, 38183821.
  • [22]
    Donnenberg, M.S., Kaper, J.B. (1991) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59, 43104317.
  • [23]
    Maloy, S., Stewart, V. and Taylor, R. (1996) Genetic Analysis of Pathogenic Bacteria. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [24]
    Guard-Petter, J, Henzler, D.J., Rahman, M.M., Carlson, R.W. (1997) On-farm monitoring of mouse-invasive Salmonella enterica serovar enteritidis and a model for its association with the production of contaminated eggs. Appl. Environ. Microbiol. 63, 15881593.
  • [25]
    Kamimura, R.T., Bicciato, S, Shimizu, H, Alford, J, Stephanopoulos, G (2000) Mining of biological data I: Identifying discriminating features via mean hypothesis testing. Metab. Eng. 2, 218227.
  • [26]
    Taraviras, S.L., Ivanciuc, O, Cabrol-Bass, D (2000) Identification of groupings of graph theoretical molecular descriptors using a hybrid cluster analysis approach. J. Chem. Inf. Comput. Sci. 40, 11281146.
  • [27]
    Petter, J.G. (1993) Detection of two smooth colony phenotypes in a Salmonella enteritidis isolate which vary in their ability to contaminate eggs. Appl. Environ. Microbiol. 59, 28842890.
  • [28]
    Humphrey, T.J., Williams, A, McAlpine, K, Lever, M.S., Guard-Petter, J, Cox, J.M. (1996) Isolates of Salmonella enterica Enteritidis PT4 with enhanced heat and acid tolerance are more virulent in mice and more invasive in chickens. Epidemiol. Infect. 117, 7988.
  • [29]
    Lu, S, Manges, A.R., Xu, Y, Fang, F.C., Riley, L.W. (1999) Analysis of virulence of clinical isolates of Salmonella enteritidis in vivo and in vitro. Infect. Immun. 67, 56515657.
  • [30]
    Jorgensen, F, Leach, S, Wilde, S.J., Davies, A, Stewart, G.S., Humphrey, T (2000) Invasiveness in chickens, stress resistance and RpoS status of wild-type Salmonella enterica subsp. enterica serovar typhimurium definitive type 104 and serovar enteritidis phage type 4 strains [in process citation]. Microbiology 146, 32273235.
  • [31]
    Carsiotis, M, Weinstein, D.L., Karch, H, Holder, I.A., O'Brien, A.D. (1984) Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect. Immun. 46, 814818.
  • [32]
    Yanagihara, S, Iyoda, S, Ohnishi, K, Iino, T, Kutsukake, K (1999) Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet. Syst. 74, 105111.
  • [33]
    Lucas, R.L., Lostroh, C.P., DiRusso, C.C., Spector, M.P., Wanner, B.L., Lee, C.A. (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J. Bacteriol. 182, 18721882.
  • [34]
    Kutsukake, K, Iino, T (1994) Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J. Bacteriol. 176, 35983605.
  • [35]
    Groisman, E.A., Ochman, H (1993) Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12, 37793787.
  • [36]
    Claret, L, Hughes, C (2000) Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J. Bacteriol. 182, 833836.
  • [37]
    Holt, P.S., Chaubal, L.H. (1997) Detection of motility and putative synthesis of flagellar proteins in Salmonella pullorum cultures. J. Clin. Microbiol. 35, 10161020.