SEARCH

SEARCH BY CITATION

References

  • [1]
    Hancock, R.E.W. (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1, 156164.
  • [2]
    Boman, H.G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 6192.
  • [3]
    Hancock, R.E.W., Diamond, G. (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402410.
  • [4]
  • [5]
    Hancock, R.E.W., Scott, M.G. (2000) The role of antimicrobial peptides in animal defences. Proc. Natl. Acad. Sci. USA 97, 88568861.
  • [6]
    Bechinger, B., Zasloff, M., Opella, S.J. (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 2, 20772084.
  • [7]
    Rozek, A., Friedrich, C.L., Hancock, R.E.W. (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39, 1576515774.
  • [8]
    Hancock, R.E.W. (1997) The bacterial outer membrane as a drug barrier. Trends Microbiol. 5, 3742.
  • [9]
    Sawyer, J.G., Martin, N.L., Hancock, R.E.W. (1988) Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect. Immun. 56, 693698.
  • [10]
    Steinberg, D.A., Hurst, M.A., Fujii, C.A. et al (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 41, 17381742.
  • [11]
    Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G., Engelberg-Kulka, H. (2001) Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. J. Bacteriol. 183, 20412045.
  • [12]
    Hancock, R.E.W. (1981) Aminoglycoside uptake and mode of action – with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. J. Antimicrob. Chemother. 8, 429445.
  • [13]
    Matsuzaki, K., Sugishita, K., Fujii, N., Miyajima, K. (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34, 34233429.
  • [14]
    Wu, M., Maier, E., Benz, R., Hancock, R.E.W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 72357242.
  • [15]
    Kagan, B.L., Selsted, M.E., Ganz, T., Lehrer, R.I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 87, 210214.
  • [16]
    Christensen, B., Fink, J., Merrifield, R.B., Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 85, 50725076.
  • [17]
    Oren, Z., Shai, Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47, 451463.
  • [18]
    Matsuzaki, K. (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta 1376, 391400.
  • [19]
    Epand, R.M., Vogel, H.J. (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1462, 1128.
  • [20]
    Zhang, L., Rozek, A., Hancock, R.E.W. (2001) Interaction of cationic peptides with model membranes. J. Biol. Chem. 276, 3571435722.
  • [21]
    Kobayashi, S., Takeshima, K., Park, C.B., Kim, S.C., Matsuzaki, K. (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 29, 86488654.
  • [22]
    Silvestro, L., Axelsen, P.H. (2000) Membrane-induced folding of cecropin A. Biophys. J. 79, 14651477.
  • [23]
    Ladokhin, A.S., Selsted, M.E., White, S.H. (1997) Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys. J. 72, 794805.
  • [24]
    Huang, H.W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39, 83478352.
  • [25]
    Friedrich, C.L., Moyles, D., Beveridge, T.J., Hancock, R.E.W. (2000) Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob. Agents Chemother. 44, 20862092.
  • [26]
    Okada, M., Natori, S. (1984) Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem. J. 222, 119124.
  • [27]
    Lehrer, R.I., Barton, A., Daher, K.A., Harwig, S.S., Ganz, T., Selsted, M.E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553561.
  • [28]
    Silvestro, L., Weiser, J.N., Axelsen, P.H. (2000) Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44, 602607.
  • [29]
    Zhang, L., Dhillon, P., Yan, H., Farmer, S., Hancock, R.E.W. (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 33173321.
  • [30]
    van Kan, E.J.M., van der Bent, A., Demel, R.A., Kruijff, B. (2001) Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues. Biochemistry 40, 63986405.
  • [31]
    Henk, W.G., Todd, W.J., Enright, F.M., Mitchell, P.S. (1995) The morphological effects of two antimicrobial peptides, hecate-1 and melittin, on Escherichia coli. Scanning Microsc. 9, 501507.
  • [32]
    Koo, S.P., Bayer, A.S., Sahl, H.G., Proctor, R.A., Yeaman, M.R. (1996) Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect. Immun. 64, 10701074.