SEARCH

SEARCH BY CITATION

References

  • [1]
    Steinbüchel, A, Hein, S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 81123.
  • [2]
    Poirier, Y, Nawrath, C, Somerville, C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13, 142150.
  • [3]
    Steinbüchel, A. (1991) Polyhydroxyalkanoic acids. In: Novel Biomaterials from Biological Sources (Byrom, D., Ed.), pp 123–216. MacMillan, New York.
  • [4]
    de Koning, G (1995) Physical properties of bacterial poly((R)3-hydroxyalkanoates). Can. J. Microbiol. 41, 303309.
  • [5]
    Lageveen, R.G., Huisman, G.W., Preusting, H, Ketelaar, P, Eggink, G, Witholt, B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54, 29242932.
  • [6]
    Poirier, Y (1999) Production of new polymeric compounds in plants. Curr. Opin. Biotechnol. 10, 181185.
  • [7]
    Poirier, Y (2001) Production of polyesters in transgenic plants. Adv. Biochem. Eng. Biotechnol. 71, 209240.
  • [8]
    Poirier, Y, Dennis, D.E., Klomparens, K, Somerville, C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256, 520523.
  • [9]
    Nawrath, C, Poirier, Y, Somerville, C.R. (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc. Natl. Acad. Sci. USA 91, 1276012764.
  • [10]
    Bohmert, K, Balbo, I, Kopka, J, Mittendorf, V, Nawrath, C, Poirier, Y, Tischendorf, G, Trethewey, R.N., Willmitzer, L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211, 841845.
  • [11]
    Slater, S, Mitsky, T.A., Houmiel, K.L., Hao, M, Reiser, S.E., Taylor, N.B., Tran, M, Valentin, H.E., Rodriguez, D.J., Stone, D.A., Padgette, S.R., Kishore, G, Gruys, K.J. (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nature Biotechnol. 17, 10111016.
  • [12]
    Mittendorf, V, Bongcam, V, Allenbach, L, Coullerez, G, Martini, N, Poirier, Y (1999) Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant J. 20, 4555.
  • [13]
    Williams, M.D., Rahn, J.A., Sherman, D.H. (1996) Production of a polyhydroxyalkanoate biopolymer in insect cells with a modified eucaryotic fatty acid synthase. Appl. Environ. Microbiol. 62, 25402546.
  • [14]
    Leaf, T.A., Peterson, M.S., Stoup, S.K., Somers, D, Srienc, F (1996) Saccharomyces cerevisiae expressing bacterial PHB synthase produces poly-3-hydroxybutyrate. Microbiology 142, 11691180.
  • [15]
    Poirier, Y, Erard, N, Macdonald-Comber Petétot, J (2001) Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid β-oxidation. Appl. Environ. Microbiol. 67, 52545260.
  • [16]
    Gould, S.J., McCollum, D, Spong, A.P., Heyman, J.A., Subramani, S (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8, 613628.
  • [17]
    Sakai, Y, Subramani, S (2000) Environmental response of yeast peroxisomes. Aspects of organelle assembly and degradation. Cell Biochem. Biophys. 32, 5161.
  • [18]
    Liu, H, Tan, X, Russell, K.A., Veenhuis, M, Cregg, J.M. (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J. Biol. Chem. 270, 1094010951.
  • [19]
    Koller, A, Spong, A.P., Lüers, G.H., Subramani, S (1999) Analysis of the peroxisomal acyl-CoA oxidase gene product from Pichia pastoris and determination of its targeting signal. Yeast 15, 10351044.
  • [20]
    Kalish, J.E., Chen, C.I., Gould, S.J., Watkins, P.A. (1995) Peroxisomal activation of long- and very long-chain fatty acids in the yeast Pichia pastoris. Biochem. Biophys. Res. Commun. 206, 335340.
  • [21]
    Veenhuis, M, Mateblowski, M, Kunau, W.-H, Harder, W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3, 7787.
  • [22]
    Scorer, C.A., Clare, J.J., McCombie, W.R., Romanos, M.A., Sreekrishna, K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology 12, 181184.
  • [23]
    Johnson, M.A., Waterham, H.R., Ksheminska, G.P., Fayura, L.R., Cereghino, J.L., Stasyk, O.V., Veenhuis, M, Kulachkovsky, A.R., Sibirny, A.A., Cregg, J.M. (1999) Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris. Genetics 151, 13791391.
  • [24]
    Snyder, W.B., Koller, A, Choy, A.J., Johnson, M.A., Cregg, J.M., Rangell, L, Keller, G.A., Subramani, S (1999) Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the peroxisome targeting signal-receptor docking complex in Pichia pastoris. Mol. Biol. Cell 10, 40054019.
  • [25]
    Olsen, L.J. (1998) The surprising complexity of peroxisome biogenesis. Plant Mol. Biol. 38, 163189.
  • [26]
    Tschopp, J.F., Brust, P.F., Cregg, J.M., Stillman, C.A., Gingeras, T.R. (1987) Expression of the LacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 15, 38593876.
  • [27]
    Horter, H, Ammerer, G, Hartter, E, Hamilton, B, Rytka, J, Bilinski, T, Ruis, H (1982) Regulation of synthesis of catalases and iso-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur. J. Biochem. 128, 179184.
  • [28]
    de Waard, P, van der Wal, H, Huijberts, G.N.M., Eggink, G (1993) Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxybutyrate). Study of β-oxidation in Pseudomonas putida. J. Biol. Chem. 268, 315319.
  • [29]
    Gurvitz, A, Mursula, A.M., Yagi, A.I., Hartig, A, Ruis, H, Rottensteiner, H, Hiltunen, J.K. (1999) Alternatives to the isomerase-dependent pathway for the β-oxidation of oleic acid are dispensable in Saccharomyces cerevisiae. J. Biol. Chem. 274, 2451424521.