SEARCH

SEARCH BY CITATION

References

  • [1]
    Demeyer, D, Hoozee, J, Mesdom, H (1974) Specificity of lipolysis during dry sausage ripening. J. Food Sci. 39, 293296.
  • [2]
    Nagy, A, Mihályi, V, Incze, K (1989) Ripening and storage of Hungarian salami. Fleischwirtschaft 69, 587588.
  • [3]
    Domínguez Fernández, M.C, Zumalacárregui Rodríguez, J.M (1991) Lipolytic and oxidative changes in ‘chorizo’ during ripening. Meat Sci. 29, 99107.
  • [4]
    Berger, R.G, Macksu, C, German, J.B, Shibamoto, T (1990) Isolation and identification of dry salami volatiles. J. Food Sci. 55, 12391242.
  • [5]
    Berdagué, J.L, Monteil, P, Montel, M.C, Talon, R (1993) Effects of starter cultures on the formation of flavour compounds in dry sausage. Meat Sci. 35, 275287.
  • [6]
    Johansson, G, Berdagué, J.L, Larsson, M, Tran, N, Borch, E (1994) Lipolysis, proteolysis and formation of volatile components during ripening of a fermented sausage with Pediococcus pentosaceus and Staphylococcus xylosus as starter cultures. Meat Sci. 38, 203218.
  • [7]
    Montel, M.C, Reitz, J, Talon, R, Berdagué, J.L, Rousset-Akrim, S (1996) Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiol. 13, 489499.
  • [8]
    Lawrence, R.M, Hawke, J (1968) The oxidation of fatty acids by mycelium of Penicillium roquefortii. J. Gen. Microbiol. 51, 289302.
  • [9]
    Hwang, D.H, Lee, Y.J, Kinsella, J.E (1976) β-Ketoacyl decarboxylase activity in spores and mycelium of Penicillium roquefortii. Int. J. Biochem. 7, 165171.
  • [10]
    Forney, F.W, Markovetz, A.J (1971) The biology of methyl ketones. J. Lipid Res. 12, 383395.
  • [11]
    Engelvin, G, Feron, G, Perrin, C, Molle, D, Talon, R (2000) Identification of beta-oxidation and thioesterase activities in Staphylococcus carnosus 833 strain. FEMS Microbiol. Lett. 190, 115120.
  • [12]
    Montel, M.C, Talon, R, Berdagué, J.L, Cantonnet, M (1993) Effects of starter cultures on the biochemical characteristics of french dry sausages. Meat Sci. 35, 229240.
  • [13]
    Talon, R, Walter, D, Chartier, S, Barrière, C, Montel, M.C (1999) Effect of nitrate and incubation conditions on the production of catalase and nitrate reductase by staphylococci. Int. J. Food Microbiol. 52, 4756.
  • [14]
    Hussain, M, Hasting, J.G.M, White, P.J (1991) A chemically defined medium for slime production by coagulase-negative staphylococci. J. Med. Microbiol. 34, 143147.
  • [15]
    Minoux, M. (1983) Programmation Mathématique, Vol. I. Bordas, Paris.
  • [16]
    Lamed, R.J, Zeikus, J.G (1981) Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem. J. 195, 183190.
  • [17]
    Fadda, S., Lebert, A. and Talon, R. (2002) Development of an enzymic method to quantify methyl ketones from bacterial origin. J. Agric. Food Chem., in press.
  • [18]
    Engelvin, G, Feron, G, Perrin, C, Mollé, D, Talon, R (2000) Identification of β-oxidation and thioesterase activities in Staphylococcus carnosus 833 strain. FEMS Microbiol. Lett. 190, 115120.
  • [19]
    Baltazar, M.F, Dickinson, F.M, Ratledge, C (1999) Oxidation of medium-chain acyl-CoA esters by extracts of Aspergillus niger: enzymology and characterization of intermediates by HPLC. Microbiology 145, 271278.
  • [20]
    Yagi, T, Kawaguchi, M, Hatano, T, Hatano, A, Nakanishi, T, Fukui, F, Fukui, S (1991) Formation of n-alkane-2-ones and n-alkane-2-ols from triglycerides by a black yeast, Aureobasidium. J. Ferment. Bioeng. 71, 9399.
  • [21]
    Larroche, C, Besson, I, Creuly, C, Gros, J.B (1992) Biotransformations par des spores de champignons filamenteux. Cah. Sci. 109, 679686.
  • [22]
    Sato, S, Imamura, S, Ozeki, Y, Kawaguchi, A (1992) Induction of enzymes involved in fatty acid β-oxidation in Pseudomonas fragi B-0771 cells grown in media supplemented with fatty acid. J. Biochem. 111, 1619.
  • [23]
    O'Connell, M, Henry, S, Shapiro, L (1986) Fatty acid degradation in Caulobacter crescentus. J. Bacteriol. 168, 4954.
  • [24]
    Broadway, N.M. (1991) Enzymology of Dicarboxylic Acid Metabolism in Corynebacterium sp. Strain 7E1C, PhD Thesis, University of Hull.
  • [25]
    Weeks, G, Shapiro, M, Burns, R.O, Walik, S.J (1969) Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. J. Bacteriol. 97, 827836.
  • [26]
    Petersen, D.J, Bennett, G.N (1990) Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli. Appl. Environ. Microbiol. 56, 34913498.
  • [27]
    Thomson, A.W, O'Neill, J.G, Wilkinson, J.F (1976) Acetone production by methylobacteria. Arch. Microbiol. 109, 243246.
  • [28]
    Durre, P, Fischer, R.J, Kuhn, A, Lorenz, K, Schreiber, W, Sturzenhofecker, B, Ullmann, S, Winzer, K, Sauer, U (1995) Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol. Rev. 17, 251262.
  • [29]
    Moreno-Arribas, V, Lonvaud-Funel, A (1999) Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiol. Lett. 180, 5560.
  • [30]
    Nomura, M, Nakajima, I, Fujita, Y, Kobayashi, M, Kimoto, H, Suzuki, I, Aso, H (1999) Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 145, 13751380.