• [1]
    Martin, J.F. (1989) Molecular genetics of amino acid-producing corynebacteria. In: Microbial Products. New Approaches (Baumberg, S., Hunter, I. and Rhodes, M., Eds.), pp. 25–29. Society for General Microbiology Symposium, 44, Cambridge University Press, Cambridge.
  • [2]
    Wosten, M.M.S.M. (1998) Eubacterial sigma-factors. FEMS Microbiol. Lett. 22, 127150.
  • [3]
    Hengge-Aronis, R. (2000) The general stress response in Escherichia coli. In: Bacterial Stress Responses (Storz, G. and Hengge-Aronis, R., Eds.), pp. 161–178. American Society for Microbiology Press, Washington, DC.
  • [4]
    Hecker, M., Volker, U. (2001) General stress response in Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 44, 3591.
  • [5]
    Halgasova, N., Bukovska, G., Timko, J., Kormanec, J. (2001) Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum. Curr. Microbiol. 43, 249254.
  • [6]
    Koptides, M., Barak, I., Sisova, M., Baloghova, E., Ugorcakova, J., Timko, J. (1992) Characterization of bacteriophage BFK20 from Brevibacterium flavum. J. Gen. Microbiol. 138, 13871391.
  • [7]
    MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., MacNeil, T. (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integration vector. Gene 111, 6168.
  • [8]
    Barak, I., Koptides, M., Jucovic, M., Sisova, M., Timko, J. (1990) Construction of promoter-probe shuttle vector for Escherichia coli and brevibacteria. Gene 95, 133135.
  • [9]
    van der Rest, M.E., Lange, C., Molenaar, D. (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52, 541545.
  • [10]
    Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.O., Seidman, J.S., Smith, J.A. and Struhl, K. (1995) Current Protocols in Molecular Biology. Wiley, New York.
  • [11]
    O'Regan, M., Thierbach, G., Bachmann, B., Villeval, D., Lepage, P., Viret, J.-F., Lemoine, Y. (1989) Cloning and nucleotide sequence of the phosphenolpyruvate carboxylase – coding gene of Corynebacterium glutamicum ATCC 13032. Gene 77, 237251.
  • [12]
    Kormanec, J., Sevcikova, B., Sprusansky, O., Benada, O., Kofronova, O., Novakova, R., Rezuchova, B., Potuckova, L., Homerova, D. (1998) The Streptomyces aureofaciens homologue of the whiB gene is essential for sporulation and its expression correlates with the developmental stage. Folia Microbiol. 43, 605612.
  • [13]
    Kieser, T., Melton, R.E. (1988) Plasmid pIJ699, a multi-copy positive-selection vector for Streptomyces. Gene 65, 8391.
  • [14]
    MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., MacNeil, T. (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integration vector. Gene 111, 6168.
  • [15]
    Paget, M.S.B., Kang, J-G., Roe, J-H., Buttner, M.J. (1998) σB, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 17, 57765782.
  • [16]
    Oguiza, J.A., Marcos, A.T., Martín, J.F. (1997) Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum. FEMS Microbiol. Lett. 153, 111117.
  • [17]
    Chan, P.F., Foster, S.J., Ingham, E., Clements, M.O. (1998) The Staphylococcus aureus alternative sigma factor σB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J. Bacteriol. 180, 60826089.
  • [18]
    Becker, L.A., Cetin, M.S., Hutkins, R.W., Benson, A.K. (1998) Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180, 45474554.
  • [19]
    Becker, L.A., Evans, S.N., Hutkins, R.W., Benson, A.K. (2000) Role of σB in adaptation of Listeria monocytogenes to growth at low temperature. J. Bacteriol. 182, 70837087.
  • [20]
    Wiedmann, M., Arvik, T.J., Hurley, R.J., Boor, K.J. (1998) General stress transcription factor σB and its role in acid tolerance and virulence of Listeria monocytogenes. J. Bacteriol. 180, 36503656.
  • [21]
    Farwick, M., Siewe, R.M., Kramer, R. (1995) Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J. Bacteriol. 177, 46904695.
  • [22]
    Doukhan, L., Predich, M., Nair, G., Dussurget, O., Mandic-Mulec, I., Cole, S.T., Smith, D.R., Smith, I. (1995) Genomic organization of the mycobacterial sigma gene cluster. Gene 165, 6770.
  • [23]
    Hu, Y., Coates, A.R.M. (1999) Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181, 469476.
  • [24]
    Mulder, N.J., Powles, R.E., Zappe, H., Steyn, L.M. (1999) The Mycobacterium tuberculosis mysB gene product is a functional equivalent of the Escherichia coli sigma factor, KatF. Gene 240, 361370.
  • [25]
    Raman, S., Song, T., Puyang, X., Bardarov, S., Jacobs, W.R., Husson, R.N. (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacteria tuberculosis. J. Bacteriol. 183, 61196125.
  • [26]
    Manganelli, R., Voskuil, M.I., Schoolnik, G.K., Smith, I. (2001) The Mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages. Mol. Microbiol. 41, 423437.