• [1]
    Scheppach, W., Luehrs, H., Menzel, T. (2001) Beneficial health effects of low digestible carbohydrate consumption. Br. J. Nutr. 85, S23S30.
  • [2]
    Mortensen, P.B., Clausen, M.R. (1996) Short chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. 31 (Suppl. 216), 132148.
  • [3]
    McIntyre, A., Gibson, P.R., Young, G.P. (1993) Butyrate production from dietary fiber and protection against large bowel cancer in a rat model. Gut 34, 386391.
  • [4]
    Archer, S.Y., Meng, S.F., Sheh, A., Hodin, R.A. (1998) p21(WAF1) is required for butyrate mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA 95, 67916796.
  • [5]
    Wachtershauser, A., Stein, J. (2000) Rationale for the luminal provision of butyrate in intestinal disease. Eur. J. Nutr. 39, 164171.
  • [6]
    Topping, D.L., Clifton, P.M. (2001) Short chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 10311064.
  • [7]
    Cummings, J.H. (1995) Short chain fatty acids. In: Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology (Gibson, G.R. and MacFarlane, G.T., Eds.), pp. 101–130. CRC Press, Boca Raton, FL.
  • [8]
    Clausen, M.R., Mortensen, P.B. (1995) Kinetic studies on colonocyte metabolism of short-chain fatty acids and glucose in ulcerative colitis. Gut 37, 684689.
  • [9]
    Ritzhaupt, A., Ellis, A., Hosie, K.B., Shirazi-Beechey, S.P. (1998) The characterization of butyrate transport across pig and human colonic luminal membrane. J. Physiol. 507, 819830.
  • [10]
    Csordas, A. (1996) Butyrate, aspirin and colorectal cancer. Eur. J. Cancer Prevent. 5, 221231.
  • [11]
    Tran, C.P., Familari, M., Parker, L.M., Whitehead, R.H., Giraud, A.S. (1998) Short-chain fatty acids inhibit intestinal trefoil factor gene expression in colon cancer cells. Am. J. Physiol. 38, G85G93.
  • [12]
    Segain, J.P., dela Bletiere, D.R., Boureille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., Blottiere, H.M., Glamiche, J.P. (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47, 397403.
  • [13]
    Luhrs, H., Gerke, T., Schauber, J., Dusel, G., Scheppach, W., Menzel, T. (2001) Cytokine-activated degradation of inhibitory kappa B protein alpha is inhibited by the short chain fatty acid butyrate. Int. J. Colorect. Dis. 16, 195201.
  • [14]
    Mariadason, J.M., Corner, G.A., Augenlicht, L.H. (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcurmin and implications for chemoprevention of colon cancer. Cancer Res. 60, 45614572.
  • [15]
    Hague, A., Elder, D.J.E., Hicks, D.J., Paraskeva, A.C. (1995) Apoptosis in colorectal tumour cells – induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 60, 400406.
  • [16]
    Avivi-Green, C., Polak-Charcon, S., Madar, Z., Schwartz, B. (2000) Apoptosis cascade proteins are regulated in vivo by high intracolonic butyrate concentration: correlation with colon cancer inhibition. Oncol. Res. 12, 8395.
  • [17]
    Perrin, P., Pierre, F., Patry, Y., Champ, M., Berreur, M., Pradal, G., Bornet, F., Meflah, K., Menanteau, J. (2001) Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut 48, 5361.
  • [18]
    Ahmad, M.S., Krishnan, S., Ramakrishna, B.S., Mathan, M., Pulimood, A.B., Murthy, S.N. (2000) Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut 46, 493499.
  • [19]
    Roediger, W.E.W., Duncan, A., Kapanaris, O., Millard, S. (1993) Reducing sulphur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 104, 802809.
  • [20]
    LeBlay, G., Michel, C., Blottiere, H.M., Cherbut, C. (1999) Prolonged intake of fructo-oligosaccharides induces a short term elevation of lactic acid producing bacteria and a persistent increase in butyrate in rats. J. Nutr. 129, 22312235.
  • [21]
    Tulea, C., Andrieux, C., Cherbuy, C., Darcy-Vrillon, B., Duee, P.H., Chaumiel, J.C. (2001) Colonic delivery of sodium butyrate by an oral route: acrylic coating design of pellets and in vivo evaluation in rats. Method Find. Exp. Clin. Pharmacol. 3, 245253.
  • [22]
    Hove, H., Holtug, K., Jeppesen, P.B., Mortensen, P.B. (1995) Butyrate absorption and lactate secretion in ulcerative colitis. Dis. Colon Rectum 38, 519525.
  • [23]
    Govers, M.J.A.P., Gannon, N.J., Dunshea, F.R., Gibson, P.R., Muir, J.G. (1999) Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. Gut 45, 840847.
  • [24]
    Wolin, M.J., Miller, T.J., Yerry, S., Zhang, Y.C., Bank, S., Weaver, G.A. (1999) Changes in fermentation pattern of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon. Appl. Environ. Microbiol. 65, 28072812.
  • [25]
    Finegold, S.M., Sutter V.L. and Mathison G.E. (1983) Normal indigenous flora. In: Human Intestinal Microflora in Health and Disease (Hentges, D.J., Ed.), pp. 3–31. Academic Press, New York.
  • [26]
    Moore, W.E.C., Moore, L.H. (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61, 32023207.
  • [27]
    Willems, A., Amat-Marco, M., Collins, M.D. (1996) Phylogenetic analysis reveals three distinct groups of species within the Clostridium subphylum of the Gram-positive bacteria. Int. J. Syst. Bacteriol. 46, 195199.
  • [28]
    Suau, A., Bonnet, R., Sutren, M., Godon, J.-J., Gibson, G.R., Collins, M.D., Dore, J. (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 47994807.
  • [29]
    Hold, G.L., Pryde, S.E., Russell, V.J., Furrie, E., Flint, H.J. (2002) Assessment of microbial diversity in human colonic samples analysed by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39, 3339.
  • [30]
    Schwiertz, A., Le Blay, G., Blaut, M. (2000) Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rDNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 66, 375382.
  • [31]
    Barcenilla, A., Pryde, S.E., Martin, J.C., Duncan, S.H., Stewart, C.S., Henderson, C., Flint, H.J. (2000) Phylogenetic relationships of dominant butyrate producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 16541661.
  • [32]
    Duncan, S.H., Hold, G.L., Barcenilla, A., Stewart, C.S., Flint, H.J. (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 52, 16151620.
  • [33]
    Duncan, S.H., Hold, G.L., Harmsen, H.J.M., Stewart, C.S., Flint, H.J. (2002) Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify the species into a new genus Faecalibacterium gen. nov. Int J. Syst. Evol. Microbiol. 52, 21412146.
  • [34]
    Suau, A., Rochet, V., Sghir, A., Gramet, G., Brewaeys, S., Sutren, M., Rigottier-Gouis, L., Dore, J. (2001) Fusobacterium prausnitzii and related species represent a dominant group within the human faecal flora. Syst. Appl. Microbiol. 24, 139145.
  • [35]
    Gottschalk, G. (1979) Bacterial Metabolism. Springer-Verlag, New York.
  • [36]
    Duncan, S.H., Barcenilla, A., Stewart, C.S., Pryde, S.E., Flint, H.J. (2002) Acetate utilization and butyryl CoA:acetate CoA transferase in human colonic bacteria. Appl. Environ. Microbiol. 68, 51865190.
  • [37]
    Smith, G.M., Kim, B.W., Franke, A.A., Roberts, J.D. (1985) 13C NMR studies of butyrate fermentation in Clostridium kluyveri. J. Biol. Chem. 260, 1350913512.
  • [38]
    Miller, T.L., Wolin, M.J. (1996) Pathways of acetate, propionate and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62, 15891592.
  • [39]
    Diez-Gonzalez, F., Bond, D.R., Jennings, E., Russell, J.R. (1999) Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch. Microbiol. 171, 324330.
  • [40]
    Boynton, Z.L., Bennett, G.N., Rudolph, F.B. (1996) Cloning, sequencing, and expression of genes encoding beta hydroxybutyryl Coenzyme A dehydrogenase, crotonase and butyryl CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 62, 27582766.
  • [41]
    Mullany, P., Clayton, C.L., Pallen, M.J., Slone, R., Al-Saleh, A., Tabaqchali, S. (1994) Genes encoding homologues of three consecutive enzymes in the butyrate/butanol-producing pathway of Clostridium acetobutylicum are clustered on the Clostridium difficile chromosome. FEMS Microbiol. Lett. 1245, 6168.
  • [42]
    Walter, K.A., Nair, R.V., Cary, J.W., Bennett, G.N., Papoutsdakis, E.T. (1993) Sequence and arrangement of two genes of the butyrate synthesis pathway of Clostridium acetobutylicum ATCC 824. Gene 134, 107111.
  • [43]
    Kanauchi, O., Fujiyama, Y., Mitsuyama, K., Araki, Y., Ishii, T., Nakamura, T., Hitomi, Y., Agata, K., Saiki, T., Andoh, A., Toyonaga, A., Bamba, T. (1999) Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int. J. Mol. Med. 3, 175179.
  • [44]
    Wolin, M.J. and Miller, T.L. (1983) Carbohydrate fermentation. In: Human Intestinal Flora in Health and Disease (Hentges, D.A., Ed.), pp. 145–165. Academic Press, New York.
  • [45]
    Zoetendal, E.G., Ackermanns, A.D.L., DeVos, W.M. (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 38543859.
  • [46]
    Weaver, G.A., Krause, J.A., Miller, T.L., Wolin, M.J. (1992) Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation – cornstarch fermentation rates correlate negatively with methanogenesis. Am. J. Clin. Nutr. 55, 7077.