• [1]
    Agarraberes, F.A., Dice, J.F. (2001) Protein translocation across membranes. Biochim. Biophys Acta 1513, 124.
  • [2]
    Driessen, A.J., Manting, E.H., van der Does, C. (2001) The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol 8, 492498.
  • [3]
    Herskovits, A.A., Bochkareva, E.S., Bibi, E. (2000) New prospects in studying the bacterial signal recognition particle pathway. Mol. Microbiol 38, 927939.
  • [4]
    Keenan, R.J., Freymann, D.M., Stroud, R.M., Walter, P. (2001) The signal recognition particle. Annu. Rev. Biochem 70, 755775.
  • [5]
    Lu, Y., Qi, H.Y., Hyndman, J.B., Ulbrandt, N.D., Teplyakov, A., Tomasevic, N., Bernstein, H.D. (2001) Evidence for a novel GTPase priming step in the SRP protein targeting pathway. EMBO J 20, 67246734.
  • [6]
    Koch, H.G., Moser, M., Muller, M. (2003) Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev. Physiol. Biochem. Pharmacol 146, 5594.
  • [7]
    Bunai, K., Yamada, K., Hayashi, K., Nakamura, K., Yamane, K. (1999) Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J. Biochem. (Tokyo) 125, 151159.
  • [8]
    van Wely, K.H., Swaving, J., Freudl, R., Driessen, A.J. (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev 25, 437454.
  • [9]
    Phillips, G.J., Silhevy, T.J. (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359, 744746.
  • [10]
    Nishiguchi, M., Honda, K., Amikura, R., Nakamura, K., Yamane, K. (1994) Structural requirements of Bacillus subtilis small cytoplasmic RNA for cell growth, sporulation, and extracellular enzyme production. J. Bacteriol 176, 157165.
  • [11]
    Kremer, B.H., van der Kraan, M., Crowley, P.J., Hamilton, I.R., Brady, L.J., Bleiweis, A.S. (2001) Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J. Bacteriol 183, 25432552.
  • [12]
    Gutierrez, J.A., Crowley, P.J., Brown, D.P., Hillman, J.D., Youngman, P., Bleiweis, A.S. (1996) Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J. Bacteriol 178, 41664175.
  • [13]
    Gutierrez, J.A., Crowley, P.J., Cvitkovitch, D.G., Brady, L.J., Hamilton, I.R., Hillman, J.D., Bleiweis, A.S. (1999) Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 145 (Pt. 2), 357366.
  • [14]
    Knox, K.W., Hardy, L.N., Wicken, A.J. (1986) Comparative studies on the protein profiles and hydrophobicity of strains of Streptococcus mutans serotype c. J. Gen. Microbiol 132, 25412548.
  • [15]
    Snoep, J.L., Teixeira de Mattos, M.J., Postma, P.W., Neijssel, O.M. (1990) Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch. Microbiol 154, 5055.
  • [16]
    Vadeboncoeur, C., St Martin, S., Brochu, D., Hamilton, I.R. (1991) Effect of growth rate and pH on intracellular levels and activities of the components of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus mutans. Infect Immun 59, 900906.
  • [17]
    Hillman, J.D., Duncan, M.J., Stashenko, K.P. (1990) Cloning and expression of the gene encoding the fructose-1,6-diphosphate-dependent l-(+)-lactate dehydrogenase of Streptococcus mutans. Infect. Immun 58, 12901295.
  • [18]
    Bender, G.R., Sutton, S.V., Marquis, R.E. (1986) Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun 53, 331338.
  • [19]
    Weisman, P. and Pillegi, V.J. (1974) Determination of inorganic phosporous. In: Clinical Chemistry: Principles and Techniques (Henry, R.J., Cannon, D.C. and Winkelman, J.W., Eds.), pp. 720–723. Harper and Row, New York.
  • [20]
    LeBlanc, D.J., Crow, V.L., Lee, L.N., Garon, C.F. (1979) Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis. J. Bacteriol 137, 878884.
  • [21]
    Fey, S.J., Nawrocki, A., Larsen, M.R., Gorg, A., Roepstorff, P., Skews, G.N., Williams, R., Larsen, P.M. (1997) Proteome analysis of Saccharomyces cerevisiae: a methodological outline. Electrophoresis 18, 13611372.
  • [22]
    Svensäter, G., Sjogreen, B., Hamilton, I.R. (2000) Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146 (Pt. 1), 107117.
  • [23]
    Svensäter, G., Welin, J., Wilkins, J.C., Beighton, D., Hamilton, I.R. (2001) Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett 205, 139146.
  • [24]
    Yamada, T., Carlsson, J. (1975) Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J. Bacteriol 124, 5561.
  • [25]
    Iwami, Y., Abbe, K., Takahashi-Abbe, S., Yamada, T. (1992) Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol. Immunol 7, 304308.
  • [26]
    Kobayashi, H., Suzuki, T., Unemoto, T. (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J. Biol. Chem 261, 627630.
  • [27]
    Munoz, E. (1982) Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Biochim. Biophys. Acta 650, 233265.
  • [28]
    Wen, Z.T., Browngardt, C., Burne, R.A. (2001) Characterization of two operons that encode components of fructose-specific enzyme II of the sugar:phosphotransferase system of Streptococcus mutans. FEMS Microbiol. Lett 205, 337342.
  • [29]
    Brown, A.T., Wittenberger, C.L. (1972) Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J. Bacteriol 110, 604615.
  • [30]
    Vadeboncoeur, C., Pelletier, M. (1997) The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol. Rev 19, 187207.
  • [31]
    Sutcliffe, I.C., Hogg, S.D., Russell, R.R. (1993) Identification of Streptococcus mutans antigen D as the HPr component of the sugar–phosphotransferase transport system. FEMS Microbiol. Lett 107, 6770.
  • [32]
    Svensäter, G., Bjornsson, O., Hamilton, I.R. (2001) Effect of carbon starvation and proteolytic activity on stationary-phase acid tolerance of Streptococcus mutans. Microbiology 147, 29712979.
  • [33]
    Inokuchi, Y., Hirashima, A., Sekine, Y., Janosi, L., Kaji, A. (2000) Role of ribosome recycling factor (RRF) in translational coupling. EMBO J 19, 37883798.
  • [34]
    Hann, B.C., Walter, P. (1991) The signal recognition particle in S. cerevisiae. Cell 67, 131144.