• [1]
    Haywood, G.W, Anderson, A.J, Ewing, D.F, Dawes, E.A (1990) Accumulation of polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. Strain NCIMB 40135. Appl. Environ. Microbiol. 56, 33543359.
  • [2]
    Madison, L.L, Huisman, G.W (1999) Metabolic engineering of poly(3-hydroxy-alkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 2153.
  • [3]
    Rehm, B.H.A (2003) Polyester synthases: natural catalysts for plastics. Biochem. J. 376, 1533.
  • [4]
    Timm, A, Steinbüchel, A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209, 1530.
  • [5]
    Qi, Q, Steinbüchel, A, Rehm, B.H.A (2000) In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 54, 3743.
  • [6]
    Rehm, B.H.A, Qi, Q, Beermann, Br.B, Hinz, H.J, Steinbüchel, A (2001) Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem. J. 358, 263268.
  • [7]
    Amara, A.A, Rehm, B.H.A (2003) Replacement of the catalytic nucleophile cysteine296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa mediated synthesis of a new polyester: identification of catalytic residues. Biochem. J. 374, 413421.
  • [8]
    Klinke, S, de Roo, G, Witholt, B, Kessler, B (2000) Role of phaD in accumulation of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas oleovorans. Appl. Environ. Microbiol. 66, 37053710.
  • [9]
    Prieto, M.A, Bühler, B, Jung, K, Witholt, B, Kessler, B (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181, 858868.
  • [10]
    Huijberts, G.N.M, de Rijk, T.C, de Waard, P, Eggink, G (1994) 13C Nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J. Bacteriol. 176, 16611666.
  • [11]
    Rehm, B.H.A, Krüger, N, Steinbüchel, A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem. 273, 2404424051.
  • [12]
    Fiedler, S, Steinbüchel, A, Rehm, B.H.A (2002) The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch. Microbiol. 178, 149160.
  • [13]
    Hoffmann, N, Amara, A.A, Beermann, Br.B, Qi, Q, Hinz, H.J, Rehm, B.H.A (2002) Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP:CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J. Biol. Chem. 277, 4292642936.
  • [14]
    Hoffmann, N, Steinbüchel, A, Rehm, B.H.A (2000) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol. Lett. 184, 253259.
  • [15]
    Hoffmann, N, Steinbüchel, A, Rehm, B.H.A (2000) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylasemediated polyhydroxyalkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54, 665670.
  • [16]
    Matsumoto, K, Matsusaki, H, Taguchi, S, Seki, M, Doi, Y (2001) Cloning and characterization of the Pseudomonas sp. 61–3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules 2, 142147.
  • [17]
    Fiedler, S, Steinbüchel, A, Rehm, B.H.A (2000) PhaG-mediated synthesis of poly(3-hydroxyalkanoate) consisting of medium-chain length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66, 21172124.
  • [18]
    Rehm, B.H.A, Mitsky, T.A, Steinbüchel, A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl. Environ. Microbiol. 67, 31023109.
  • [19]
    Tsuge, T, Fukui, T, Matsusaki, H, Taguchi, K, Kobayashi, G, Ishizaki, A, Doi, Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol. Lett. 184, 193198.
  • [20]
    Taguchi, K, Aoyagi, Y, Matsusaki, H, Fukui, T, Doi, Y (1999) Co-expression of 3ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol. Lett. 176, 183190.
  • [21]
    Langenbach, S, Rehm, B.H.A, Steinbüchel, A (1997) Functional expression of PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol. Lett. 150, 303309.
  • [22]
    Qi, Q, Steinbüchel, A, Rehm, B.H.A (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol. Lett. 167, 8994.
  • [23]
    Green, P.R, Kemper, J, Schechtman, L, Guo, L, Satkowski, M, Fiedler, S, Steinbüchel, A, Rehm, B.H.A (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3, 208213.
  • [24]
    Worsey, M.J, Williams, P.A (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J.Bacteriol. 124, 713.
  • [25]
    Köhler, T, Harayama, S, Ramos, J.L, Timmis, K.N (1989) Involvement of Pseudomonas putida rpoNσ factor in regulation of various metabolic functions. J. Bacteriol. 171, 43264333.
  • [26]
    Huisman, G.W, Wonink, E, Meima, R, Kazemier, B, Terpstra, P, Witholt, B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266, 21912198.
  • [27]
    Ishimoto, K.S, Lory, S (1989) Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc. Natl. Acad. Sci. USA 86, 19541957.
  • [28]
    Totten, P.A, Lara, J.C, Lory, S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J. Bacteriol. 172, 389396.
  • [29]
    Ohman, D.E, Chakrabarty, A.M (1981) Genetic mapping of chromosomal determinants of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect. Immun. 33, 142148.
  • [30]
    Mak, Y.M, Ho, K.K (1991) An improved method for the isolation of chromosomal DNA from various bacteria and cyanobacteria. Nucleic Acids Res. 20, 41014102.
  • [31]
    Brandl, H, Gross, R.A, Lenz, R.W, Fuller, R.C (1988) Pseudomonas oleovorans as a source of poly(3-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54, 19771982.
  • [32]
    Kim, Y, Watrud, L.S, Matin, A (1995) A carbon starvation survival gene of Pseudomonas putida is regulated by sigma 54. J. Bacteriol. 177, 18501859.
  • [33]
    Heurlier, K, Denervaud, V, Pessi, G, Reimmann, C, Haas, D (2000) Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185, 22272235.