SEARCH

SEARCH BY CITATION

References

  • Ashiuchi M, Tani K, Soda K & Misono H (1998) Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-gamma-glutamate. J Biochem (Tokyo) 123: 11561163.
  • Banerjee A, Dubnau E, Quemard A et al. (1994) InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227230.
  • Barreto ML, Pereira SM & Ferreira AA (2006) BCG vaccine: efficacy and indications for vaccination and revaccination. J Pediatr (Rio J) 82: S45S54.
  • Bhatt A, Fujiwara N, Bhatt K et al. (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104: 51575162.
  • Born TL & Blanchard JS (1999) Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr Opin Chem Biol 3: 607613.
  • Cáceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V & Barletta RG (1997) Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis. J Bacteriol 179: 50465055.
  • Chambers HF, Moreau D, Yajko D et al. (1995) Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother 39: 26202624.
  • Cirilli M, Zheng R, Scapin G & Blanchard JS (1998) Structural symmetry: the three-dimensional structure of Haemophilus influenzae diaminopimelate epimerase. Biochemistry 37: 1645216458.
  • Dye C (2006) Global epidemiology of tuberculosis. Lancet 367: 938940.
  • Gallo KA & Knowles JR (1993) Purification, cloning, and cofactor independence of glutamate racemase from Lactobacillus. Biochemistry 32: 39813990.
  • Gao LY, Laval F, Lawson EH et al. (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49: 15471563.
  • Glavas S & Tanner ME (1999) Catalytic acid/base residues of glutamate racemase. Biochemistry 38: 41064113.
  • Goffin C & Ghuysen JM (2002) Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66: 702738.
  • Hartmann M, Tauch A, Eggeling L, Bathe B, Mockel B, Puhler A & Kalinowski J (2003) Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the l-lysine biosynthesis of Corynebacterium glutamicum. J Biotechnol 104: 199211.
  • Higgins W, Tardif C, Richaud C, Krivanek MA & Cardin A (1989) Expression of recombinant diaminopimelate epimerase in Escherichia coli. Isolation and inhibition with an irreversible inhibitor. Eur J Biochem 186: 137143.
  • Kaufmann SH & Parida SK (2007) Changing funding patterns in tuberculosis. Nat Med 13: 299303.
  • Koo CW & Blanchard JS (1999) Chemical mechanism of Haemophilus influenzae diaminopimelate epimerase. Biochemistry 38: 44164422.
  • Koo CW, Sutherland A, Vederas JC & Blanchard JS (2000) Identification of active site cysteine residues that function as general bases: diaminopimelate epimerase. J Am Chem Soc 122: 61226123.
  • Kremer L, Dover LG, Morbidoni HR et al. (2003) Inhibition of inhA activity, but not kasA activity, induces formation of a kasA-containing complex in mycobacteria. J Biol Chem 278: 2054720554.
  • Lloyd AJ, Huyton T, Turkenburg J & Roper DI (2004) Refinement of Haemophilus influenzae diaminopimelic acid epimerase (dapF) at 1.75 A resolution suggests a mechanism for stereocontrol during catalysis. Acta Crystallogr D Biol Crystallogr 60: 397400.
  • Pillai B, Cherney MM, Diaper CM, Sutherland A, Blanchard JS, Vederas JC & James MN (2006) Structural insights into stereochemical inversion by diaminopimelate epimerase: an antibacterial drug target. Proc Natl Acad Sci USA 103: 86688673.
  • Richaud C, Higgins W, Mengin-Lecreulx D & Stragier P (1987) Molecular cloning, characterization, and chromosomal localization of dapF, the Escherichia coli gene for diaminopimelate epimerase. J Bacteriol 169: 14541459.
  • Rudnick G & Abeles RH (1975) Reaction mechanism and structure of the active site of proline racemase. Biochemistry 14: 45154522.
  • Ruiz RC (1964) d-cycloserine in the treatment of pulmonary tuberculosis resistant to the standard drugs: a study of 116 cases. Dis Chest 45: 181186.
  • Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407477.
  • Takayama K & Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33: 14931499.
  • Tanner ME (2002) Understanding nature's strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res 35: 237246.
  • Tanner ME, Gallo KA & Knowles JR (1993) Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry 32: 39984006.
  • Usha V, Dover LG, Roper DL, Lloyd AJ & Besra GS (2006) Use of a codon alteration strategy in a novel approach to cloning the Mycobacterium tuberculosis diaminopimelic acid epimerase. FEMS Microbiol Lett 262: 3947.
  • Vilcheze C, Wang F, Arai M et al. (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12: 10271029.
  • Wietzerbin J, Das BC, Petit JF, Lederer E, Leyh-Bouille M & Ghuysen JM (1974) Occurrence of d-alanyl-(d)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. Biochemistry 13: 34713476.
  • Winder FGA, Collins P & Rooney SA (1970) Effects of isoniazid on mycolic acid synthesis in Mycobacterium tuberculosis and on its cell envelope. Biochem J 117: P27.
  • Wiseman JS & Nichols JS (1984) Purification and properties of diaminopimelic acid epimerase from Escherichia coli. J Biol Chem 259: 89078914.