SEARCH

SEARCH BY CITATION

References

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • Blum H, Bier H & Gross H (1987) Improved silver staining of plants proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 9399.
  • Chen DC, Yang BC & Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21: 8384.
  • Chen L, Coutinho PM, Nikolov Z & Ford C (1995) Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Eng 8: 10491055.
  • Coutinho PM & Henrissat B (1999) The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. Genetics, Biochemistry and Ecology of Cellulose Degradation (OhmiyaK, HayashiK, SakkaK, KobayashiY, KaritaS & KimuraT, eds), pp. 1523. Uni Publishers Company, Tokyo.
  • Goto M, Seminaru T, Fukukawa K & Hayashida S (1994) Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachii expressed in Saccharomyces cerevisiae. Appl Environ Microbiol 60: 39263930.
  • Gupta R, Gigras P, Mohapatra H, Goswam VK & Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38: 15991616.
  • Iefuji H, Chino M, Kato M & Imura Y (1996) Raw-starch-digesting and thermostable α-amylase from yeast Cryptococcus sp. S-2: purification, cloning and sequencing. Biochem J 318: 989996.
  • Inohara-Ochiai M, Nakayama T, Goto R, Nakao M, Ueda T & Shibano Y (1997) Altering substrate specificity of Bacillus sp. SAM1606 α-glucosidase by comparative site-specific mutagenesis. J Biol Chem 272: 16011607.
  • Ishikawa K, Matsui I, Honda K & Nakatani H (1992) Multi-functional roles of a histidine residue in human pancreatic α-amylase. Biochem Biophys Res Commun 183: 286291.
  • Ishikawa K, Matsui I, Kobayashi S, Nakatani H & Honda K (1993) Substrate recognition at the binding site in mammalian pancreatic alpha-amylase. Biochemistry 32: 62596265.
  • Janeček S (1997) α-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67: 6797.
  • Janeček S, Lévêque E & Haye B (1999) Close evolutionary relatedness of α-amylases from archaea and plants. J Mol Evol 48: 421426.
  • Kang HK, Lee JH, Kim D, Day DF, Robyt JF, Park KH & Moon TW (2004) Cloning and expression of Lipomyces starkeyiα-amylase in Escherichia coli and determination of some of its properties. FEMS Microbiol Lett 233: 5364.
  • Laemmli UK (1970) Cleavage of structural proteins assembly of the head of bacteriophage T4. Nature 227: 680685.
  • Lee JT, Kanai H, Kobayashi T, Akiba T & Kudo T (1996) Cloning, nucleotide sequence, and hyperexpression of α-amylase gene from an archaeon, Thermococcus profundus. J Fermen Bioeng 82: 432438.
  • Lo HF, Lin LL, Chiang WY, Chie MC, Hsu WH & Chang CT (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch Microbiol 178: 115123.
  • MacGregor EA, Janeček S & Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1549: 120.
  • Machovič M & Janeček S (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63: 27102724.
  • Machovič M, Svensson B, MacGregor EA & Janeček S (2005) A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 272: 54975513.
  • Mattsson P, Battchikova N, Sippola K & Korpela T (1995) The role of histidine residues in the catalytic act of cyclomaltodextrin glucanotransferase from Bacillus circulans var. alkalophilus. Biochim Biophys Acta 1247: 97103.
  • Moraes LMP, Astolfi-filho S & Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion protein. Appl Microbiol Biotechnol 43: 10671076.
  • Sambrook J & Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Satyanarayana T, Noorwez SM, Kumar S, Rao JLUM, Ezhilvannan M & Kaur P (2004) Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans 32: 276278.
  • Søgaard M, Kadziola A, Haser R & Svensson B (1993b) Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem 268: 2248022484.
  • Steyn AJC & Pretorius IS (1990) Expression and secretion of amylolytic enzymes by Saccharomyces cerevisiae. Acta Varia 5: 76126.
  • Svensson B, Pedersen TG, Svendsen IB, Sakai T & Ottesen M (1982) Characterization of two forms of glucoamylase from Aspergillus niger. Carlsberg Res Commun 47: 5569.
  • Takase K (1992) Interaction of catalytic-site mutants of Bacillus subtilis alpha-amylase with substrates and acarbose. Biochim Biophys Acta 1122: 278282.
  • Takase K (1994) Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of alpha-amylase by wheat proteinaceous inhibitor. Biochemistry 33: 79257930.
  • Thompson JD, Higgis DG & Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.
  • Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H & Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94: 137155.
  • Vihinen M, Ollikka P, Niskanen J, Meyer P, Suominen I, Karp M, Holm L, Knowles J & Mäntsälä P (1990) Site-directed mutagenesis of a thermostable α-amylase from Bacillusstearothermophilus: putative role of three conserved residues. J Biochem 107: 267272.
  • Wanderley KJ, Torres FAG, Moraes LMP & Ulhoa CJ (2004) Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol Lett 231: 165169.