The prpZ gene cluster encoding eukaryotic-type Ser/Thr protein kinases and phosphatases is repressed by oxidative stress and involved in Salmonella enterica serovar Typhi survival in human macrophages

Authors


  • Editor: David Clarke

Correspondence: Hervé Le Moual, Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada, H3A 2B4. Tel.: +514 398 6235; fax: +514 398 7052; e-mail: herve.le-moual@mcgill.ca

Abstract

The prpZ gene cluster consists of three ORFs coding for proteins with homology to eukaryotic-type Ser/Thr protein phosphatases 2C (prpZ) and Ser/Thr protein kinases (prkY and prkX). This cluster is present in the sequenced genomes of Salmonella enterica serovar Typhi (S. Typhi) strains Ty2 and CT18. This study investigated the genetic organization of this gene cluster, its regulation and its putative involvement in virulence. The three genes are transcribed as a polycistronic mRNA as demonstrated by reverse transcriptase (RT)-PCR. Analysis of a prpZlacZ transcriptional fusion showed that the prpZ locus is expressed throughout the growth phase. LacZ activity and real-time RT-PCR showed that transcription of the mRNA is negatively regulated upon exposure of cells to HOCl and, to a lesser extent, hydrogen peroxide. A deletion mutant of the prpZ gene cluster showed a significantly lower level of survival than the parental strain Ty2 in human macrophages at 48 h postinfection. Together these data suggest that prpZ, prkY and prkX are virulence genes that may be part of a signaling pathway controlling long-term survival of S. Typhi in host cells.

Ancillary