SEARCH

SEARCH BY CITATION

References

  • Ben-David EA, Holden PJ, Stone DJ, Harch BD & Foster LJ (2004) The use of phospholipid fatty acid analysis to measure impact of acid rock drainage on microbial communities in sediments. Microb Ecol 48: 300315.
  • Bligh E & Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911917.
  • Broderick NA, Raffa KF & Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103: 1519615199.
  • Burr MD, Clark SJ, Spear CR & Camper AK (2006) Denaturing gradient gel electrophoresis can rapidly display the bacterial diversity contained in 16S rDNA clone libraries. Microb Ecol 51: 479486.
  • Chinalia FA & Killham KS (2006) 2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere 64: 16751683.
  • Ferreira LHPL, Brasil MJ & Andrade G (2003) Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganisms. Plant Soil 256: 161168.
  • Frostegård Å & Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22: 5965.
  • Frostegård Å, Tunlid A & Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59: 36053617.
  • Girlanda M, Perotto S, Mönne-Loccoz Y, Bergero R, Lazzari A, Défago G, Bonfante P & Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67: 18511864.
  • Hirano SS & Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae– a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64: 624653.
  • Johansen A & Olsson S (2005) Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere. Microb Ecol 49: 272281.
  • Krechel A, Faupel A, Hallmann J, Ulrich A & Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48: 772786.
  • Kumar S, Tamura K & Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150163.
  • Lindow SE & Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69: 18751883.
  • Lindow SE & Leveau JH (2002) Phyllosphere microbiology. Curr Opin Biotechnol 13: 238243.
  • Maduell P & Armengol G (2008) Bacillus thuringiensis is a poor colonist of leaf surface. Microb Ecol 55: 212219.
  • Murty MG (1984) Phyllosphere of cotton as a habitat for diazotrophic microorganisms. Appl Environ Microbiol 48: 713718.
  • O'Leary W & Wilkinson SG (1988) Gram-positive bacteria. Microbial Lipids, Vol. 1. (RatledgeC & WilkinsonSG, eds), pp. 117201. Academic Press, London, UK.
  • Øvreås L, Forney L, Daae FL & Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63: 33673373.
  • Pfender WF, Fieland VP, Ganiob LM & Seidler RJ (1996) Microbial community structure and activity in wheat straw after inoculation with biological control organisms. Appl Soil Ecol 3: 6978.
  • Russell D, Chard J & McKinlay R (1999) Effect of Bacillus thuringiensis and a pyrethroid insecticide on the leaf microflora of Brassica oleracea. Lett Appl Microbiol 28: 359362.
  • Sandhu A, Halverson LJ & Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9: 383392.
  • Scherwinski K, Wolf A & Berg G (2007) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Bio Control 52: 87112.
  • Schreiber L, Krimm U, Knoll D, Sayed M, Auling G & Kroppenstedt RM (2005) Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol 166: 589594.
  • Thirup L, Johansen A & Winding A (2003) Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiol Ecol 43: 383392.
  • White DC, Stair J & Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol Biotechnol 17: 185196.
  • Wilkinson S (1988) Gram-negative bacteria. Microbial Lipids, Vol. 1. (RatledgeC & WilkinsonSG, eds), pp. 299448. Academic Press, London, UK.
  • Yang CH, Crowley DE, Borneman J & Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci USA 98: 38893894.
  • Zogg GP, Zak DR, Ringleberg DB, MacDonald NW, Pregitzer KS & White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61: 475481.