SEARCH

SEARCH BY CITATION

References

  • Bai GH, Desjardins AE & Plattner RD (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153: 9198.
  • Bluhm BH & Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant-Microbe Interact 18: 13331339.
  • Brown DW, Dyer RB, McCormick SP, Kendra DF & Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41: 454462.
  • Champeil A, Dore T & Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166: 13891415.
  • Covarelli L, Turner AS & Nicholson P (2004) Repression of deoxynivalenol accumulation and expression of Tri genes in Fusarium culmorum by fungicides in vitro. Plant Pathol 53: 2228.
  • Espeso EA & Penalva MA (1992) Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol 6: 14571465.
  • Goswami RS & Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5: 515525.
  • Hohn TM & Beremand PD (1989) Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination. Gene 79: 131138.
  • Hohn TM, Krishna R & Proctor RH (1999) Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol 26: 224235.
  • Jansen C, Von Wettstein D, Schafer W, Kogel KH, Felk A & Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA 102: 1689216897.
  • Jennings P, Coates ME, Turner JA, Chandler EA & Nicholson P (2004) Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol 53: 182190.
  • Kimura M, Tokai T, O'Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T & Yamaguchi I (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 539: 105110.
  • Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402408.
  • Maggio-Hall LA, Wilson RA & Keller NP (2005) Fundamental contribution of beta-oxidation to polyketide mycotoxin production in planta. Mol Plant-Microbe Interact 18: 783793.
  • Miller JD & Greenhalgh R (1985) Nutrient effects on the biosynthesis of trichothecenes and other metabolites by Fusarium graminearum. Mycologia 77: 130136.
  • Miller JD, Taylor A & Greenhalgh R (1983) Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum. Can J Microbiol 29: 11711178.
  • Miller JD, Greenhalgh R, Wang YZ & Lu M (1991) Trichothecene chemotypes of 3 Fusarium Species. Mycologia 83: 121130.
  • O'Donnell K, Ward TJ, Geiser DM, Kistler HC & Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41: 600623.
  • Ospina-Giraldo MD, Mullins E & Kang S (2003) Loss of function of the Fusarium oxysporumSNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44: 4957.
  • Peplow AW, Tag AG, Garifullina GF & Beremand MN (2003) Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol 69: 27312736.
  • Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F & Ouellet T (2007) Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett 581: 443447.
  • Proctor RH, Hohn TM & McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact 8: 593601.
  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11: 1217.
  • Ruijter GJ & Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151: 103114.
  • Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K & Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98: 159166.
  • Takahashi T, Chevalier PM & Rupp RA (2001) Storage and remobilization of soluble carbohydrates after heading in different plant parts of a winter wheat cultivar. Plant Prod Sci 4: 160165.
  • Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M & Kimura M (2007) FusariumTri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun 353: 412417.
  • Tonukari NJ, Scott-Craig JS & Walton JD (2000) The Cochliobolus carbonumSNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12: 237248.
  • Voigt CA, Scheidt BV, Gácser A, Kassner H, Lieberei R, Schäfer W & Salomon S (2007) Enhanced mycotoxin production of a lipase-deficient Fusarium graminearum mutant correlates to toxin-related gene expression. Eur J Plant Pathol 117: 112.
  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E & O'Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci USA 99: 92789283.