SEARCH

SEARCH BY CITATION

References

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • Battle SE, Meyer F, Rello J, Kung VL & Hauser AR (2008) The hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 190: 71307140.
  • Cheetham BF & Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18: 201208.
  • Costas AM, White AK & Metcalf WW (2001) Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem 276: 1742917436.
  • Cserzo M, Wallin E, Simon I, Von Heijne G & Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10: 673676.
  • Dobrindt U, Hochhut B, Hentschel U & Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414424.
  • Elrod R & Braun A (1942) Pseudomonas aeruginosa: its role as a plant pathogen. J Bacteriol 44: 633645.
  • Finlay BB & Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol R 61: 136169.
  • Glazebrook JS, Campbell RS, Hutchinson GW & Stallman ND (1978) Rodent zoonoses in North Queensland: the occurrence and distribution of zoonotic infections in North Queensland rodents. Aust J Exp Biol Med 56: 147156.
  • Green SK, Schroth MN, Cho JJ, Kominos SK & Vitanza-jack VB (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28: 987991.
  • Hammer AS, Pedersen K, Andersen TH, Jorgensen JC & Dietz HH (2003) Comparison of Pseudomonas aeruginosa isolates from mink by serotyping and pulsed-field gel electrophoresis. Vet Microbiol 94: 237243.
  • Hauser AR, Cobb E, Bodí M, Mariscal D, Vallés J, Engel JN & Rello J (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30: 521528.
  • Hayashi T, Matsumoto H, Ohnishi M & Terawaki Y (1993) Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol Microbiol 7: 657667.
  • Hayashi T, Matsumoto H, Ohnishi M, Yokota S, Shinomiya T, Kageyama M & Terawaki Y (1994) Cytotoxin-converting phages, phi CTX and PS21, are R pyocin-related phages. FEMS Microbiol Lett 122: 239244.
  • He J, Baldini RL, Deziel E et al. (2004) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. P Natl Acad Sci USA 101: 25302535.
  • Hill CW (1999) Large genomic sequence repetitions in bacteria: lessons from rRNA operons and Rhs elements. Res Microbiol 150: 665674.
  • Hoadley AW (1977) Pseudomonas aeruginosa in surface waters. Pseudomonas aeruginosa: Ecological Aspects and Patient Colonization (YoungVM, ed), pp. 3157. Raven Press, New York.
  • Hogan DA & Kolter R (2002) Pseudomonas–Candida interactions: an ecological role for virulence factors. Science 296: 22292232.
  • Jander G, Rahme LG & Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182: 38433845.
  • Klockgether J, Reva O, Larbig K & Tummler B (2004) Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 186: 518534.
  • Klockgether J, Wurdemann D, Reva O, Wiehlmann L & Tummler B (2007) Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 189: 24432459.
  • Larbig KD, Christmann A, Johann A et al. (2002) Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol 184: 66656680.
  • Lawrence JG (2005) Horizontal and vertical gene transfer: the life history of pathogens. Contrib Microbiol 12: 255271.
  • Lee DG, Urbach JM, Wu G et al. (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7: R90.
  • Liang X, Pham XQ, Olson MV & Lory S (2001) Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J Bacteriol 183: 843853.
  • Lukashin AV & Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26: 11071115.
  • Mahajan-Miklos S, Tan M-W, Rahme LG & Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96: 4756.
  • Mathee K, Narasimhan G, Valdes C et al. (2008) Dynamics of Pseudomonas aeruginosa genome evolution. P Natl Acad Sci USA 105: 31003105.
  • Metcalf WW & Wolfe RS (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180: 55475558.
  • Meyer F, Goesmann A, McHardy AC et al. (2003) GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31: 21872195.
  • Nakayama K, Kanaya S, Ohnishi M, Terawaki Y & Hayashi T (1999) The complete nucleotide sequence of phi CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol 31: 399419.
  • Nakayama K, Takashima K, Ishihara H et al. (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38: 213231.
  • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG & Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 18991902.
  • Reiter WD, Palm P & Yeats S (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17: 19071914.
  • Rhame FS (1979) The ecology and epidemiology of Pseudomonas aeruginosa. Pseudomonas aeruginosa: the Organism, Diseases it Causes, and their Treatment (SabathLD, ed), pp. 3151. Hans Huber Publishers, Bern.
  • Riley MA & Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56: 117137.
  • Schmidt KD, Tummler B & Romling U (1996) Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol 178: 8593.
  • Schulert GS, Feltman H, Rabin SDP, Martin CG, Battle SE, Rello J & Hauser AR (2003) Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 188: 16951706.
  • Shen K, Sayeed S, Antalis P et al. (2006) Extensive genomic plasticity in Pseudomonas aeruginosa revealed by identification and distribution studies of novel genes among clinical isolates. Infect Immun 74: 52725283.
  • Shinomiya T & Ina S (1989) Genetic comparison of bacteriophage PS17 and Pseudomonas aeruginosa R-type pyocin. J Bacteriol 171: 22872292.
  • Spencer DH, Kas A, Smith EE et al. (2003) Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185: 13161325.
  • Stover CK, Pham XQ, Erwin AL et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959964.
  • Stryjewski ME & Sexton DJ (2003) Pseudomonas aeruginosa infections in specific types of patients and clinical settings. Severe Infections Caused by Pseudomonas aeruginosa, Vol. 7 (HauserAR & RelloJ, eds), pp. 115. Kluwer Academic Publishers, Boston.
  • Wolfgang MC, Kulasekara BR, Liang X et al. (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. P Natl Acad Sci USA 100: 84848489.