SEARCH

SEARCH BY CITATION

References

  • Asagoshi K, Yamada T, Okada Y, Terato H, Ohyama Y, Seki S & Ide H (2000) Recognition of formamidopyrimidine by Escherichia coli and mammalian thymine glycol glycosylases. Distinctive paired base effects and biological and mechanistic implications. J Biol Chem 275: 2478124786.
  • Cabrera M, Nghiem Y & Miller JH (1988) mutM, a second mutator locus in Escherichia coli that generates G.C–T.A transversions. J Bacteriol 170: 54055407.
  • Ciofu O, Riis B, Pressler T, Poulsen HE & Hoiby N (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemoth 49: 22762282.
  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA & Ellenberger T (2006) DNA Repair and Mutagenesis. ASM Press, Washington, DC.
  • Garibyan L, Huang T, Kim M et al. (2003) Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2: 593608.
  • Gomez MI & Prince A (2007) Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7: 244251.
  • Gutierrez O, Juan C, Perez JL & Oliver A (2004) Lack of association between hypermutation and antibiotic resistance development in Pseudomonas aeruginosa isolates from intensive care unit patients. Antimicrob Agents Chemoth 48: 35733575.
  • Hall LM & Henderson-Begg SK (2006) Hypermutable bacteria isolated from humans – a critical analysis. Microbiology 152: 25052514.
  • Hazra TK, Izumi T, Venkataraman R, Kow YW, Dizdaroglu M & Mitra S (2000) Characterization of a novel 8-oxoguanine-DNA glycosylase activity in Escherichia coli and identification of the enzyme as endonuclease VIII. J Biol Chem 275: 2776227767.
  • Jacobs MA, Alwood A, Thaipisuttikul I et al. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. P Natl Acad Sci USA 100: 1433914344.
  • Jin DJ & Gross CA (1988) Mapping and sequence of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202: 4558.
  • Konstan MW, Hilliard KA, Norvell TM & Berger M (1994) Bronchoalveolar lavage findings in cystic inflammation. Am J Resp Crit Care 150: 448454.
  • Macia MD, Blanquer D, Togores B, Sauleda J, Perez JL & Oliver A (2005) Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemoth 49: 33823386.
  • Maga G, Villani G, Crespan E, Wimmer U, Ferrari E, Bertocci B & Hubscher U (2007) 8-Oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature 447: 606608.
  • Maki H & Sekiguchi M (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355: 273275.
  • McKenzie GJ & Rosenberg SM (2001) Adaptive mutations, mutator DNA polymerases and genetic change strategies of pathogens. Curr Opin Microbiol 4: 586594.
  • Metzgar D & Wills C (2000) Evidence for the adaptive evolution of mutation rates. Cell 101: 581584.
  • Michaels ML & Miller JH (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174: 63216325.
  • Morero NR & Argarana CE (2009) Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin. FEMS Microbiol Lett 290: 217226.
  • Nghiem Y, Cabrera M, Cupples CG & Miller JH (1988) The mutY gene: a mutator locus in Escherichia coli that generates G.C–T.A transversions. P Natl Acad Sci USA 85: 27092713.
  • Oliver A, Canton R, Campo P, Baquero F & Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 12511254.
  • Oliver A, Sanchez JM & Blazquez J (2002) Characterization of the GO system of Pseudomonas aeruginosa. FEMS Microbiol Lett 217: 3135.
  • Sanders LH, Rockel A, Lu H, Wozniak DJ & Sutton MD (2006) Role of Pseudomonas aeruginosa dinB-encoded DNA polymerase IV in mutagenesis. J Bacteriol 188: 85738585.
  • Saumaa S, Tover A, Tark M, Tegova R & Kivisaar M (2007) Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J Bacteriol 189: 55045514.
  • Shibutani S, Takeshita M & Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431434.
  • Wyrzykowski J & Volkert MR (2003) The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. J Bacteriol 185: 17011704.
  • Yamada M, Nunoshiba T, Shimizu M, Gruz P, Kamiya H, Harashima H & Nohmi T (2006) Involvement of Y-family DNA polymerases in mutagenesis caused by oxidized nucleotides in Escherichia coli. J Bacteriol 188: 49924995.
  • Yanofsky C, Cox EC & Horn V (1966) The unusual mutagenic specificity of an E. coli mutator gene. P Natl Acad Sci USA 55: 274281.