• Anderson A & Cooper RA (1969) Gluconeogenesis in Escherichia coli the role of triose phosphate isomerase. FEBS Lett 4: 1920.
  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B & Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31: 14061408.
  • Brown SA, Palmer KL & Whiteley M (2008) Revisiting the host as a growth medium. Nat Rev Micro 6: 657666.
  • Bullas LR & Ryu JI (1983) Salmonella typhimurium LT2 strains which are r− m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156: 471474.
  • Cooper RA (1984) Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38: 4968.
  • Cooper RA & Anderson A (1970) The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. FEBS Lett 11: 273276.
  • Eriksson S, Lucchini S, Thompson A, Rhen M & Hinton JCD (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. 47: 103118.
  • Ferguson GP, Chacko AD, Lee CH & Booth IR (1996) The activity of the high-affinity K+ uptake system Kdp sensitizes cells of Escherichia coli to methylglyoxal. J Bacteriol 178: 39573961.
  • Ferguson GP, Totemeyer S, MacLean MJ & Booth IR (1998) Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170: 209219.
  • Hoiseth SK & Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238239.
  • Irani MH & Maitra PK (1977) Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J Bacteriol 132: 398410.
  • Mercado-Lubo R, Gauger EJ, Leatham MP, Conway T & Cohen PS (2008) A Salmonella enterica serovar Typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice. Infect Immun 76: 11281134.
  • Mo E, Peters SE, Willers C, Maskell DJ & Charles IG (2006) Single, double and triple mutants of Salmonella enterica serovar Typhimurium degP (htrA), degQ (hhoA) and degS (hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb Pathogenesis 41: 174182.
  • Munoz-Elias EJ & McKinney JD (2006) Carbon metabolism of intracellular bacteria. Cell Microbiol 8: 1022.
  • Poysti NJ & Oresnik IJ (2007) Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J Bacteriol 189: 34453451.
  • Schmieger H (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119: 7588.
  • Smith H (2000) Questions about the behaviour of bacterial pathogens in vivo. Philos T Roy Soc B 355: 551564.
  • Totemeyer S, Booth NA, Nichols WW, Dunbar B & Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27: 553562.
  • Zheng P, Sun JB, Van Den Heuvel J & Zeng AP (2006) Discovery and investigation of a new, second triose phosphate isomerase in Klebsiella pneumoniae. J Biotechnol 125: 462473.