SEARCH

SEARCH BY CITATION

References

  • Asahara H, Himeno H, Tamura K, Nameki N, Hasegawa T & Shimizu M (1994) Escherichia coli seryl-tRNA synthetase recognizes tRNASer by its characteristic tertiary structure. J Mol Biol 236: 738748.
  • Bedouelle H, Guez V, Vidal-Cros A & Hermann M (1990) Overproduction of tyrosyl-tRNA synthetase is toxic to Escherichia coli: a genetic analysis. J Bacteriol 172: 39403945.
  • Bilokapic S, Korencic D, Söll D & Weygand-Durasevic I (2004) The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur J Biochem 271: 694702.
  • Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Söll D, Weygand-Durasevic I & Ban N (2006) Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J 25: 24982509.
  • Bilokapic S, Rokov-Plavec J, Ban N & Weygand-Durasevic I (2008) Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. FEBS J 275: 28312844.
  • Breitschopf K & Gross HJ (1994) The exchange of the discriminator base A73 for G is alone sufficient to convert human tRNA(Leu) into a serine-acceptor in vitro. EMBO J 13: 31663169.
  • Coulondre C & Miller JH (1977) Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escherichia coli. J Mol Biol 117: 577606.
  • Gagnon Y, Lacoste L, Champagne N & Lapointe J (1996) Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-tRNA synthetase. J Biol Chem 271: 1485614863.
  • Gruic-Sovulj I, Jaric J, Dulic M, Cindric M & Weygand-Durasevic I (2006) Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. J Mol Biol 61: 128139.
  • Guzman L, Belin D, Carson MJ & Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177: 41214130.
  • Himeno H, Yoshida S, Soma A & Nishikawa K (1997) Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNALeuin vitro. J Mol Biol 268: 704711.
  • Ibba M & Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69: 617650.
  • Jahn M, Rogers MJ & Söll D (1991) Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature 352: 258260.
  • Kim HS, Vothknecht UC, Hedderich R, Celic I & Söll D (1998) Sequence divergence of seryl-tRNA synthetases in archaea. J Bacteriol 180: 64466449.
  • Korenčić D (2004) Two seryl-tRNA synthetases in the methanogenic archaeon Methanosarcina barkeri. PhD Thesis, University of Zagreb, Zagreb.
  • Korenčić D, Polycarpo C, Weygand-Durasevic I & Söll D (2004) Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J Biol Chem 279: 4878048786.
  • Lenhard B, Orellana O, Ibba M & Weygand-Durasevic I (1999) tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res 27: 721729.
  • Low B, Gates F, Goldstein T & Söll D (1971) Isolation and partial characterization of temperature sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol 108: 742750.
  • McClain WH & Foss K (1988) Changing the identity of a tRNA by introducing a G–U wobble pair near the 3′ acceptor end. Science 240: 793796.
  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY.
  • Miller JH & Albertini AM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164: 5971.
  • Min B, Kitabatake M, Polycarpo C, Pelaschier J, Raczniak G, Ruan B, Kobayashi H, Namgoong S & Söll D (2003) Protein synthesis in Escherichia coli with mischarged tRNA. J Bacteriol 185: 35243526.
  • Mocibob M & Weygand-Durasevic I (2008) The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo. Arch Biochem Biophys 470: 129138.
  • Murgola EJ (1985) tRNA, suppression, and the code. Annu Rev Genet 19: 5780.
  • Nazarenko IA, Peterson ET, Zakharova OD, Lavrik OI & Uhlenbeck OC (1992) Recognition nucleotides for human phenylalanyl-tRNA synthetase. Nucleic Acids Res 20: 475478.
  • Normanly J, Ogden RC, Horvath SJ & Abelson J (1986) Changing the identity of a transfer RNA. Nature 321: 213219.
  • Polycarpo CR, Herring S, Berubea A, Wood JL, Söll D & Ambrogelly A (2006) Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett 580: 66956700.
  • Rokov J, Söll D & Weygand-Durasevic I (1998) Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASerin vivo and in vitro. Plant Mol Biol 38: 497502.
  • Rokov-Plavec J, Lesjak S, Landeka I, Mijakovic I & Weygand-Durasevic I (2002) Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Arch Biochem Biophys 397: 4050.
  • Rokov-Plavec J, Bilokapic S, Gruic-Sovulj I, Mocibob M, Glavan F, Brgles M & Weygand-Durasevic I (2004) Unilateral flexibility in tRNASer recognition by heterologous seryl-tRNA synthetases. Period Biol 106: 147154.
  • Sherman JM, Rogers MJ & Söll D (1992) Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation. Nucleic Acids Res 20: 15471552.
  • Weygand-Durasevic I & Cusack S (2005) Seryl-tRNA synthetases. The Aminoacyl-tRNA Synthetases (Ibba M, Francklyn C & Cusack S, eds), pp. 177192. Landes Biosciences, Georgetown, TX.
  • Weygand-Durasevic I, Ban N, Jahn D & Söll D (1993) Yeast Seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo. Eur J Biochem 214: 869877.
  • Weygand-Durasevic I, Nalaskowska M & Söll D (1994) Coexpression of eukaryotic tRNAser and yeast Seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. J Bacteriol 176: 232239.