SEARCH

SEARCH BY CITATION

References

  • Alonso-Casajús N, Dauvillee D, Viale AM, Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Eydallin G, Ball S & Pozueta-Romero J (2006) Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the non reducing ends in Escherichia coli. J Bacteriol 188: 52665272.
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • Bahat-Samet E, Castro-Sowinski S & Okon Y (2004) Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett 237: 195203.
  • Burdman S, Jurkevitch E, Schwartsburd B & Okon Y (1999) Involvement of outer membrane proteins in aggregation of Azospirillum brasilense. Microbiology 145: 11451152.
  • Burdman S, Jurkevitch E, Soria-Diaz ME, Serrano AMG & Okon Y (2000a) Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol Lett 189: 259264.
  • Burdman S, Okon Y & Jurkevitch E (2000b) Surface characteristics of Azospirillumbrasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26: 91110.
  • Burdman S, Kadouri D, Jurkevitch E & Okon Y (2002) Bacterial phytostimulators in the rhizosphere: from research to application. Encyclopedia of Environmental Microbiology, Soil Microbiology (BittonG, ed.), pp. 343354. John Wiley & Sons, New York.
  • Caiola MG, Canini A, Botta AL & Del Gallo M (2004) Localization of Azospirillum brasilense Cd in inoculated tomato (Lycopersicon esculentum Mill.) roots. Ann Microbiol 54: 365380.
  • Danhorn T & Fuqua C (2007) Biofilm formation by plant-associated bacteria. Ann Rev Microbiol 61: 401422.
  • Del Gallo M & Haegi A (1990) Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum. Symbiosis 9: 155161.
  • Del Gallo M, Negi M & Neyra CA (1989) Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 171: 35043510.
  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Okon Y & Vanderleyden J (2002) Effect of inoculation with wild type Azospirillum brasilense and A. irakense on development and nitrogen uptake of spring wheat and grain maize. Biol Fert Soils 36: 284297.
  • Domínguez-Ferreras A, Pérez-Arnedo R, Becker A, Olivares J, Soto AJ & Sanjuán J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188: 76177625.
  • Dreiling CE, Brown DE, Casale L & Kelly L (1987) Muscle glycogen: comparison of iodine binding and enzyme digestion assays and application to meat samples. Meat Sci 20: 167177.
  • Figurski DH & Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. P Natl Acad Sci USA 76: 16481652.
  • Fu J & Xu X (2006) The functional divergence of two glgP homologues in Synechocystis sp. PCC6803. FEMS Microbiol Lett 260: 201209.
  • Hall-Stoodley L & Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotech 13: 228233.
  • Han Y, Zhou D, Pang X et al. (2005) Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. Res Microbiol 156: 403415.
  • Kadouri D, Burdman S, Jurkevitch E & Okon Y (2002) Identification and isolation of genes involved in poly-(β-hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl Environ Microb 68: 29432949.
  • Kadouri D, Jurkevitch E & Okon Y (2003a) Poly beta-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol 180: 309318.
  • Kadouri D, Jurkevitch E & Okon Y (2003b) Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microb 69: 32443250.
  • Kaneko T, Sato S, Kotani H et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109136.
  • Kim IS, Moon HY, Yun HS & Jin I (2006) Heat shock causes oxidative stress and induces a variety of cell recue proteins in Saccharomyces cerevisiae KNU5377. J Microbiol 44: 492501.
  • Lepek VC, D'Antuono AL, Tomatis PE, Ugalde JE, Giambiagi S & Ugalde RA (2002) Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase (pgm) and glycogen synthase (glgA) null mutants on nodulation of Lotus tenuis. Mol Plant Microbe In 15: 368375.
  • Lerner A, Okon Y & Burdman S (2009) The wzm gene located in the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155: 791804.
  • McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ & Barrow PA (2005) Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 151: 39693977.
  • Michiels K, Verreth C & Vanderleyden J (1990) Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. J Appl Bacteriol 69: 705711.
  • Michiels KW, Croes CL & Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137: 22412246.
  • Moens S & Vanderleyden J (1996) Functions of bacterial flagella. Crit Rev Microbiol 22: 67100.
  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38: 419458.
  • Preiss J (2006) Bacterial glycogen inclusions: enzymology and regulation of synthesis. Microbiology Monographs: Inclusions in Prokaryotes (ShivelyJM, ed.), pp. 71108. Springer, Heidelberg.
  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, New York.
  • Simon R, Priefer U & Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1: 784791.
  • Strange RE (1968) Bacterial ‘glycogen’ and survival. Nature 220: 606607.
  • Tarrand JJ, Krieg NR & Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group with the description of a new genus, Azospirillum gen. nov. and two species, Azospirillumlipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24: 967980.
  • Uhlich GA, Cooke PH & Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microb 72: 25642572.
  • Van Houte J & Jansen HM (1970) Role of glycogen in survival of Streptococcus mitis. J Bacteriol 101: 10831085.
  • Vanstockem M, Michiels K, Vanderleyden J & Van Gool AP (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-mob insertion mutants. Appl Environ Microb 53: 410415.
  • Yousef-Coronado P, Travieso ML & Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 288: 118124.