SEARCH

SEARCH BY CITATION

References

  • Amacher DE (2005) Drug-associated mitochondrial toxicity and its detection. Curr Med Chem 12: 18291839.
  • Andries K, Verhasselt P, Guillemont J et al. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223227.
  • Boshoff HI & Barry CE III (2005) Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3: 7080.
  • Boyer PD (1993) The binding change mechanism for ATP synthase – some probabilities and possibilities. Biochim Biophys Acta 1140: 215250.
  • Check E (2007) After decades of drought, new drug possibilities flood TB pipeline. Nat Med 13: 266.
  • Cole ST, Eiglmeier K, Parkhill J et al. (2001) Massive gene decay in the leprosy bacillus. Nature 409: 10071011.
  • Cox RA & Cook GM (2007) Growth regulation in the mycobacterial cell. Curr Mol Med 7: 231245.
  • De Jonge MR, Koymans LH, Guillemont JE, Koul A & Andries K (2007) A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins 67: 971980.
  • Diacon AH, Pym A, Grobusch M et al. (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. New Engl J Med 360: 23972405.
  • Diez M, Zimmermann B, Börsch M et al. (2004) Proton-powered subunit rotation in single membrane-bound F0F1–ATP synthase. Nat Struct Mol Biol 11: 135141.
  • Dye C (2009) Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat Rev Microbiol 7: 8187.
  • Dye C, Scheele S, Dolin P, Pathania V & Raviglione MC (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. J Am Med Assoc 282: 677686.
  • Fisher N, Warman AJ, Ward SA & Biagini GA (2009) Type II NADH: quinone oxidoreductases of Plasmodium falciparum and Mycobacterium tuberculosis kinetic and high-throughput assays. Method Enzymol 456: 303320.
  • Friedl P, Hoppe J, Gunsalus RP, Michelsen O, Von Meyenburg K & Schairer HU (1983) Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. EMBO J 2: 99103.
  • Gengenbacher M, Rao SP, Pethe K & Dick T (2010) Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156: 8187.
  • Gomez JE & McKinney JD (2004) M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84: 2944.
  • Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A & Bald D (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Ch 53: 12901292.
  • Higashi T, Kalra VK, Lee SH, Bogin E & Brodie AF (1975) Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei. I. Purification, homogeneity, and properties. J Biol Chem 250: 65416548.
  • Ibrahim M, Andries K, Lounis N, Chauffour A, Truffot-Pernot C, Jarlier V & Veziris N (2007) Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob Agents Ch 51: 10111015.
  • Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C & Jarlier V (2006) In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Ch 50: 19211926.
  • Jiang W, Hermolin J & Fillingame RH (2001) The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. P Natl Acad Sci USA 98: 49664971.
  • Junge W, Lill H & Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22: 420423.
  • Kaim G & Dimroth P (1999) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J 18: 41184127.
  • Kana BD, Weinstein EA, Avarbock D, Dawes SS, Rubin H & Mizrahi V (2001) Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J Bacteriol 183: 70767086.
  • Kerscher S, Dröse S, Zickermann V & Brandt U (2008) The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 45: 185222.
  • Koul A, Dendouga N, Vergauwen K et al. (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3: 323324.
  • Koul A, Vranckx L, Dendouga N et al. (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283: 2527325280.
  • Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG & Kozikowski AP (2009) Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 52: 21092118.
  • Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K & Jarlier V (2006) Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob Agents Ch 50: 35433547.
  • Matsoso LG, Kana BD, Crellin PK, Lea-Smith DJ, Pelosi A, Powell D, Dawes SS, Rubin H, Coppel RL & Mizrahi V (2005) Function of the cytochrome bc1–aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bacteriol 187: 63006308.
  • Matsuno-Yagi A & Hatefi Y (1993) Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles. J Biol Chem 268: 15391545.
  • Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, Cook GM, Dimroth P & Brutschy B (2007) A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol Microbiol 189: 58955902.
  • Miesel L, Weisbrod TR, Marcinkeviciene JA, Bittman R & Jacobs WR Jr (1998) NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180: 24592467.
  • Mitome N, Suzuki T, Hayashi S & Yoshida M (2004) Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling. P Natl Acad Sci USA 101: 1215912164.
  • Niebisch A & Bott M (2003) Purification of a cytochrome bc–aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1. J Biol Chem 278: 43394346.
  • Rao SP, Alonso S, Rand L, Dick T & Pethe K (2008) The proton motive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. P Natl Acad Sci USA 105: 1194511950.
  • Santana M, Ionescu MS, Vertes A, Longin R, Kunst F, Danchin A & Glaser P (1994) Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176: 68026811.
  • Sassetti CM, Boyd DH & Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 7784.
  • Schmid R & Gerloff DL (2004) Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. FEBS Lett 578: 163168.
  • Schnappinger D, Ehrt S, Voskuil MI et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.
  • Schnorpfeil M, Janausch IG, Biel S, Kröger A & Unden G (2001) Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur J Biochem 268: 30693074.
  • Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V & Gennaro ML (2005) Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. P Natl Acad Sci USA 102: 1562915634.
  • Starck J, Källenius G, Marklund BI, Andersson DI & Akerlund T (2004) Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150: 38213829.
  • Timm J, Post FA, Bekker LG et al. (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. P Natl Acad Sci USA 100: 1432114326.
  • Tran SL & Cook GM (2005) The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bacteriol 187: 50235028.
  • Turina P, Rebecchi A, D'Alessandro M, Anefors S & Melandri BA (2006) Modulation of proton pumping efficiency in bacterial ATP synthases. Biochim Biophys Acta 1757: 320325.
  • Upadhayaya RS, Vandavasi JK, Vasireddy NR, Sharma V, Dixit SS & Chattopadhyaya J (2009) Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg Med Chem 17: 28302841.
  • Vik SB & Antonio BJ (1994) A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269: 3036430369.
  • Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR & Schoolnik GK (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198: 705713.
  • Wallace KB & Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicolog 40: 353388.
  • Wayne LG & Hayes LG (1998) Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis 79: 127132.
  • Wayne LG & Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55: 139163.
  • Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D, McColm AA, Duncan K, Lonsdale JT & Rubin H (2005) Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. P Natl Acad Sci USA 102: 45484553.
  • Yano T, Li LS, Weinstein E, Teh JS & Rubin H (2006) Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J Biol Chem 281: 1145611463.