SEARCH

SEARCH BY CITATION

References

  • Andries K, Verhasselt P, Guillemont J et al. (2005) A diarylquinoline drug active on the ATP synthesis of Mycobacterium tuberculosis. Science 307: 223227.
  • Bakels RH, Van Walraven HS, Van Wielink JE, Van Der Zwet-De Graaff I, Krenn BE, Krab K, Berden JA & Kraayenhof R (1994) The effect of sulfite on the ATP hydrolysis and synthesis activity of membrane-bound H(+)-ATP synthase from various species. Biochem Bioph Res Co 201: 487492.
  • Bald D & Koul A (2010) Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol 308: 17.
  • Bald D, Amano T, Muneyuki E, Pitard B, Rigaud JL, Kruip J, Hisabori T, Yoshida M & Shibata M (1998) ATP synthesis by F0F1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition. J Biol Chem 273: 865870.
  • Bald D, Muneyuki E, Amano T, Kruip J, Hisabori T & Yoshida M (1999) The noncatalytic site-deficient alpha3beta3gamma subcomplex and FoF1-ATP synthase can continuously catalyse ATP hydrolysis when Pi is present. Eur J Biochem 262: 563568.
  • Bashford L, Barlow C, Chance B, Smith J, Silberstein B & Rehncrona S (1979) Some properties of the extrinsic probe, oxonol-V, in tissues. Frontiers of Biological Energetics, Vol. 2 (ScarpaA, DuttonPL & LeighJS, eds), pp. 13031311. Academic Press, New York.
  • Bell RD & Doisy EA (1920) Rapid colorimetric methods for the determination of phosphorus in urine and blood. J Biol Chem 44: 5567.
  • Beste DJV, Espasa M, Bonde B, Kierzek AM, Stewart GR & McFadden J (2009) The genetic requirement for fast and slow growth in mycobacteria. PLoS One 4: e5349.
  • Bogin E, Higashi T & Brodie AF (1970) The effect of trypsin and heat treatment on oxidative phosphorylation in Mycobacterium phlei. Biochem Bioph Res Co 41: 9951001.
  • Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA & Barry CE III (2004) The responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 4017440184.
  • Boyer PD (2002) A research journey with ATP synthase. J Biol Chem 277: 3904539061.
  • Cappellini P, Turina P, Fregni V & Melandri BA (1997) Sulfite stimulates the ATP hydrolysis activity of but not proton translocation by the ATP synthase of Rhodobacter capsulatus and interferes with its activation by delta muH+. Eur J Biochem 248: 496506.
  • Check E (2007) After decades of drought, new drug possibilities flood TB pipeline. Nat Med 13: 266.
  • Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O & Niederweis M (2009) Physiology of mycobacteria. Adv Microb Physiol 55: 81181.
  • Diacon AH, Pym A, Grobusch M et al. (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360: 23972405.
  • Dye C (2009) Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat Rev Microbiol 7: 8187.
  • Grüber G, Godovac-Zimmermann J & Nawroth T (1994) ATP synthesis and hydrolysis of the ATP-synthase from Micrococcus luteus regulated by an inhibitor subunit and membrane energization. Biochim Biophys Acta 1186: 4351.
  • Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A & Bald D (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Ch 53: 12901292.
  • Harmann LG, Ding CZ, Miller AV, Madsen CS, Wang P, Stein SD, Pudzianowski AT, Green DW, Monshizadegan H & Atwal KS (2004) Benzodiazepine-based selective inhibitors of mitochondrial F1F0 ATP hydrolase. Bioorg Med Chem Lett 14: 10311034.
  • Harris DA, John P & Radda GK (1977) Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. I. The Paracoccus denitrificans system. Biochim Biophys Acta 459: 546559.
  • Hicks DB & Krulwich TA (1990) Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem 265: 2054720554.
  • Hicks DB, Cohen DM & Krulwich TA (1994) Reconstitution of energy-linked activities of the solubilized F1F0 ATP synthase from Bacillus subtilis. J Bacteriol 176: 41924195.
  • Higashi T, Kalra VK, Lee SH, Bogin E & Brodie AF (1975) Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei. I. Purification homogeneity, and properties. J Biol Chem 250: 65416548.
  • Hisabori T, Kato Y, Motohashi K, Kroth-Pancic P, Strotmann H & Amano T (1997) The regulatory functions of the gamma and epsilon subunits from chloroplast CF1 are transferred to the core complex, alpha3beta3, from thermophilic bacterial F1. Eur J Biochem 247: 11581165.
  • Hoffmann C, Leis A, Niederweis M, Plitzko JM & Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. P Natl Acad Sci USA 105: 39633967.
  • Huitric E, Verhasselt P, Andries K & Hoffner SE (2007) In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Ch 51: 42024204.
  • Ji B, Chauffour A, Andries K & Jarlier V (2006a) Bactericidal activities of R207910 and other newer antimicrobial agents against Mycobacterium leprae in mice. Antimicrob Agents Ch 50: 15581560.
  • Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C & Jarlier V (2006b) In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Ch 50: 19211926.
  • Johnson KM, Swenson L, Opipari AW Jr, Reuter R, Zarrabi N, Fierke CA, Börsch M & Glick GD (2009) Mechanistic basis for differential inhibition of the F1F0-ATPase by aurovertin. Biopolymers 91: 830840.
  • Keis S, Stocker A, Dimroth P & Cook GM (2006) Inhibition of ATP hydrolysis by thermoalkaliphilic F1F0-ATP synthase is controlled by the C terminus of the epsilon subunit. J Bacteriol 188: 37963804.
  • Koul A, Dendouga N, Vergauwen K et al. (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3: 323324.
  • Koul A, Vrankx L, Dendouga N et al. (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283: 2527325280.
  • Mandavilli A (2007) Virtually incurable TB warns of impending disaster. Nat Med 13: 271.
  • Mattow J, Jungblut PR, Schaible UE, Mollenkopf HJ, Lamer S, Zimny-Arndt U, Hagens K, Müller EC & Kaufmann SH (2001) Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis 22: 29362946.
  • Morales-Ríos E, De La Rosa-Morales F, Mendoza-Hernández G, Rodríguez-Zavala JS, Celis H, Zarco-Zavala M & García-Trejo JJ (2010) A novel 11-kDa inhibitory subunit in the F1Fo ATP synthase of Paracoccus denitrificans and related α-proteobacteria. FASEB J 24: 110.
  • Nakano M, Imamura H, Toei M, Tamakoshi M, Yoshida M & Yokoyama K (2008) ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J Biol Chem 283: 2078920796.
  • Pacheco-Moisés F, Minauro-Sanmiguel F, Bravo C & García JJ (2002) Sulfite inhibits the F1F0-ATP synthase and activates the F1F0-ATPase of Paracoccus denitrificans. J Bioenerg Biomembr 34: 269278.
  • Rao SP, Alonso S, Rand L, Dick T & Pethe K (2008) The proton motive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. P Natl Acad Sci USA 105: 1194511950.
  • Sassetti CM & Rubin EJ (2007) The open book of infectious diseases. Nat Med 13: 279280.
  • Sassetti CM, Boyd DH & Rubin EJ (2003) Genes required for mycobacterial growth defined by high-density mutagenesis. Mol Microbiol 48: 7784.
  • Schnorpfeil M, Janausch IG, Biel S, Kröger A & Unden G (2001) Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur J Biochem 268: 30693074.
  • Suzuki T, Murakami T, Iino R, Suzuki J, Ono S, Shirakihara Y & Yoshida M (2003) F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance. J Biol Chem 278: 4684046846.
  • Syroeshkin AV, Vasilyeva EA & Vinogradov AD (1995) ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. FEBS Lett 366: 2932.
  • Tran SL & Cook GM (2005) The F1F0-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bacteriol 187: 50235028.
  • Von Ballmoos C, Wiedenmann A & Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78: 649672.
  • Wayne LG & Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infection and Immunity 64: 20622069.
  • Wayne LG & Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55: 139163.
  • Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D, McColm AA, Duncan K, Lonsdale JT & Rubin H (2005) Inhibitors of type II NADH: menaquinone oxidoreductase represent a class of antitubercular drugs. P Natl Acad Sci USA 102: 45484553.
  • Yoshimura F & Brodie AF (1981) Interaction of Vanadate with membrane-bound ATPase from Mycobacterium phlei. J Biol Chem 256: 1223912242.
  • Zharova TV & Vinogradov AD (2003) Proton-translocating ATP-synthase of Paracoccus denitrificans: ATP-hydrolytic acitivity. Biochemistry (Moscow) 68: 110111108.
  • Zharova TV & Vinogradov AD (2006) Energy-dependent transformation of F0.F1-ATPase in Paracoccus denitrificans plasma membranes. J Biol Chem 279: 1231912324.