Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age

Authors


  • Editor: Rustam Aminov

Correspondence: Alexander G. Haslberger, Department of Nutritional Sciences, University of Vienna, UZAII, Althanstrasse 2, A-1090 Vienna, Austria. Tel.: +43 699 122 11212; fax: +43 1 879 5896; e-mail: alexander.haslberger@univie.ac.at

Abstract

The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function.

Ancillary