SEARCH

SEARCH BY CITATION

References

  • Achenbach L, Michaelidou U, Bruce R, Fryman J & Coates J (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Micr 51: 527533.
  • Atlas RM (2004) Handbook of Media for Environmental Microbiology. CRC Press, Boca Raton, FL.
  • Bardiya N & Bae JH (2008) Isolation and characterization of Dechlorospirillum anomalous strain JB116 from a sewage treatment plant. Microbiol Res 163: 182191.
  • Bender KS, Rice MR, Fugate WH, Coates JD & Achenbach LA (2004) Metabolic primers for detection of (per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences. Appl Environ Microb 70: 56515658.
  • Blakemore RP, Maratea D & Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140: 720729.
  • Coates JD (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microb 65: 52345241.
  • Emerson D & Floyd MM (2005) Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Method Enzymol 397: 112123.
  • Emerson D & Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microb 63: 47844792.
  • Emerson D & Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microb 68: 30853093.
  • Emerson D & Weiss JV (2004) Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol J 21: 405414.
  • Emerson D, Weiss JV & Megonigal JP (1999) Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl Environ Microb 65: 27582761.
  • Emerson D, Fleming EJ & McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64: 561583.
  • Geelhoed JS, Sorokin DY, Epping E et al. (2009) Microbial sulfide oxidation in the oxic–anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiol Ecol 70: 5465.
  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 9598.
  • Hallbeck L & Pederson K (1991) Autotrophic and mixotrophic growth of Gallionellaferruginea. J Gen Microbiol 137: 26572661.
  • Kepner RL Jr & Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Mol Biol R 58: 603615.
  • King DW, Lounsbury HA & Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ Sci Technol 29: 818824.
  • Kucera S & Wolfe RS (1957) A selective enrichment method for Gallionella ferruginea. J Bacteriol 74: 344349.
  • Lovley DR (2000) Fe(III) and Mn(IV) reduction. Environmental Microbe–Metal Interactions (LovleyDR, ed), pp. 330. ASM Press, Washington, DC.
  • Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • Neubauer SC, Emerson D & Megonigal JP (2002) Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microb 68: 39883995.
  • Picardal F & Cooper DC (2005) Microbially mediated changes in the mobility of contaminant metals in soils and sediments. Heavy Metal Contamination in Soil (AhmadI, HayatS & PichtelJ, eds), pp. 4388. Science Publishers Inc., Enfield, NH.
  • Roden EE & Emerson D (2007) Microbial metal cycling in aquatic environments. Manual of Environmental Microbiology (HurstCJ, CrawfordRL, GarlandJL, LipsonDA, MillsAL & StetzenbachLD, eds), pp. 540562. ASM Press, Washington, DC.
  • Roden EE & Zachara JM (1996) Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30: 16181628.
  • Sobolev D & Roden EE (2001) Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH. Appl Environ Microb 67: 13281334.
  • Strąpoć D, Picardal FW, Turich C et al. (2008) Methane-producing microbial community in a coal bed of the Illinois Basin. Appl Environ Microb 74: 24242432.
  • Stumm W & Lee GF (1961) Oxygenation of ferrous iron. Ind Eng Chem 53: 143146.
  • Taoka A, Umeyama C & Fukumori Y (2009) Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Curr Microbiol 58: 177181.
  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA & Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41: 17401746.
  • Wang J, Muyzer G, Bodelier PLE & Laanbroek HJ (2009) Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. ISME J 3: 715725.
  • Weiss JV, Rentz JA, Plaia T et al. (2007) Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J 24: 559570.