• Bowie JU, Reidhaar-Olson JF, Lim WA & Sauer RT (1990) Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247: 13061310.
  • Bracchi-Ricard V, Nguyen KT, Zhou Y, Rajagopalan PTR, Chakrabarti D & Pei D (2001) Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396: 162170.
  • Butler MS & Buss AD (2006) Natural products – the future scaffolds for novel antibiotics. Biochem Pharmacol 71: 919929.
  • Chen DZ, Patel DV, Hackbarth CJ et al. (2000) Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39: 12561262.
  • Escobar-Avarez S, Goldgur Y, Yang G, Querfelli O, Li Y & Sceinberg DA (2009) Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. J Mol Biol 17: 12111228.
  • Fiser A & Sali A (2003) Modeller: generation and refinement of homology-based protein sequence models. Method Enzymol 374: 461491.
  • Guay DRP (2007) Drug forecast – the peptide deformylase inhibitors as antibacterial agents. Ther Clinic Risk Management 3: 513525.
  • Han C, Wang Q, Dong L, Sun H, Peng S, Chen J, Yang Y, Yue J, Shen X & Jiang H (2004) Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori. Biochem Bioph Res Co 319: 12921298.
  • Humphrey W, Dalke A & Schulten K (1996) VMD-visual molecular dynamics. J Mol Graph 14: 3338.
  • Meinnel T, Lazennec C & Blanquet S (1995) Mapping of the active site zinc ligands of peptide deformylase. J Mol Biol 254: 175183.
  • Meinnel T, Lazennec C, Villoing S & Blanquet S (1997) Structure–function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. J Mol Biol 267: 749761.
  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK & Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 16391662.
  • Nam KH, Kim KH, Kim EEK & Hwang KY (2009) Crystal structure of an EfPDF complex with Met-Ala-Ser based on crystallographic packing. Biochem Bioph Res Co 381: 630633.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L & Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26: 17811802.
  • Pichota A, Duraiswamy J, Yin Z et al. (2008) Peptide deformylase inhibitors of Mycobacterium tuberculosis: synthesis, structural investigations, and biological results. Bioorg Med Chem Lett 18: 65686572.
  • Rajagopalan PTR & Pei D (1998) Oxygen-mediated inactivation of peptide deformylase. J Biol Chem 273: 2230522310.
  • Rajagopalan PTR, Datta A & Pei D (1997a) Purification, characterization, and inhibition of peptide deformylase from Escherichia coli. Biochemistry 36: 1391013918.
  • Rajagopalan PTR, Yu XC & Pei D (1997b) Peptide deformylase: a new type of mononuclear iron protein. J Am Chem Soc 119: 1241812419.
  • SambrookJ, FritschFE & ManiatisT, (eds) (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • Saxena R & Chakraborti PK (2005a) Identification of regions involved in enzymatic stability of peptide deformylase of Mycobacterium tuberculosis. J Bacteriol 187: 82168220.
  • Saxena R & Chakraborti PK (2005b) The carboxy-terminal end of the peptide deformylase from Mycobacterium tuberculosis is indispensable for its enzymatic activity. Biochem Bioph Res Co 332: 418425.
  • Saxena R, Kanudia P, Datt M, Dar HH, Karthikeyan S, Singh B & Chakraborti PK (2008) Three consecutive arginines are important for the mycobacterial peptide deformylase enzyme activity. J Biol Chem 238: 2375423764.
  • Teo JWP, Thayalan P, Beer D et al. (2006) Peptide deformylase inhibitors as potent antimycobacterial agents. Antimicrob Agents Ch 50: 36653673.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.
  • Woycechowsky KJ, Choutko A, Vamvaca K & Hilvert D (2008) Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 47: 1348913496.