SEARCH

SEARCH BY CITATION

References

  • Alexandre G (2010) Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156: 22832293.
  • Alexandre G, Greer SE & Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182: 60426048.
  • Bahat-Samet E, Castro-Sowinski S & Okon Y (2004) Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett 237: 195203.
  • Baldani JI, Krieg NR, Baldani VLD, Hartmann A & Döbereiner J (2005) Genus II. Azospirillum. Bergey's Manual of Systematic Bacteriology, Vol. 2 (Brenner DJ, Krieg NR & Staley JT, eds), pp. 726. Springer-Verlag, New York.
  • Bashan Y & de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108: 77136.
  • Bible AN, Stephens BB, Ortega DR, Xie Z & Alexandre G (2008) Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190: 63656375.
  • Burdman S, Jurkevitch E & Okon Y (2000a) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26: 91110.
  • Burdman S, Jurkevitch E, Soria-Diaz ME, Gil Serrano AM & Okon Y (2000b) Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol Lett 89: 259264.
  • Burdman S, Dulguerova G, Okon Y & Jurkevitch E (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots and its involvement in cell aggregation. Mol Plant–Microbe Interact 14: 555561.
  • Burton GW & Ingold KU (1984) β-Carotene: an unusual type of lipid antioxidant. Science 224: 569573.
  • Carreño-López R, Sánchez A, Camargo N, Elmerich C & Baca BE (2009) Characterization of chsA, a new gene controlling the chemotactic response in Azospirillum brasilense Sp7. Arch Microbiol 191: 501507.
  • Cassan FD & Garcia de Salamone I (2008) Azospirillum sp.: Cell physiology, Plant Interactions and Agronomic Research in Argentina. Asociación Argentina de Microbiología, Buenos Aires.
  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V & Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45: 1219.
  • Castro-Sowinski S, Burdman S, Matan O & Okon Y (2010) Functions of PHA in the environment. Plastics from Bacteria: Natural Functions and Applications (Chen GQ, ed), pp. 3961. Springer-Verlag, Berlin.
  • Combes-Meynet E, Pothier JF, Moënne-Loccoz Y & Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant–Microbe Interact 24: 271284.
  • Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier MA, Rohr R, Comte G, Moënne-Loccoz Y & Prigent-Combaret C (2011) The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157: 16941705.
  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA & Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221: 297303.
  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Rodriguez Carvajal MA, Soria Diaz ME, Gil Serrano A, Okon Y & Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40: 27132721.
  • Diaz-Zorita M & Fernandez-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense in dryland wheat productivity. Eur J Soil Biol 45: 311.
  • Dobbelaere S & Okon Y (2007) The plant growth promoting effects and plant responses. Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations (Elmerich C & Newton WE, eds), pp. 145170. Springer-Verlag, Heidelberg.
  • Dobbelaere S, Croonenborghs A, Thys A et al. (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28: 871879.
  • Edwards AN, Siuti P, Bible AN, Alexandre G, Retterer ST, Doktycz MJ & Morrell-Falvey JL (2011) Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy. FEMS Microbiol Lett 314: 131139.
  • Fuentes-Ramirez LE & Caballero-Mellado J (2005) Bacterial biofertilizers. PGPR: Biological Control and Biofertilization (Sadiqui ZA, ed), pp. 143172. Springer-Verlag, Dordrecht.
  • Greer-Phillips SE, Stephens BB & Alexandre G (2004) An energy taxis transducer promotes root colonization by Azospirillum brasilense. J Bacteriol 186: 65956604.
  • Hartmann A & Hurek T (1988) Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7. J Gen Microbiol 134: 4492455.
  • Hartmann A, Schmid M, van Tuinen D & Berg G (2008) Plant-driven selection of microbes. Plant Soil 321: 235257.
  • Heimann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46: 47110.
  • Helman Y, Burdman S & Okon Y (2011) Plant growth promotion by rhizosphere bacteria through direct effects. Beneficial Microorganisms in Multicellular Life Forms (Rosenberg E & Gophna U, eds), pp. 89103. Springer-Verlag, Berlin.
  • Huergo LF, Merrick M, Monteiro RA, Chubatsu LS, Maria BR, Steffens MBR, Pedrosa FO & Souza EM (2009) In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense. J Biol Chem 284: 66746682.
  • Hungria M, Campo RJ, Souza EM & Pedrosa FA (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331: 413425.
  • Jofre E, Lagares A & Mori G (2004) Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense. FEMS Microbiol Lett 231: 267275.
  • Kadouri D, Burdman S, Jurkevitch E & Okon Y (2002) Identification and isolation of genes involved in poly-hydroxybutyrate (PHB) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl Environ Microbiol 68: 29432949.
  • Kadouri D, Jurkevitch E & Okon Y (2003) Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69: 32443250.
  • Kadouri D, Castro-Sowinski S, Jurkevitch E & Okon Y (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31: 5567.
  • Katsy EI, Borisov IV, Petrova LP & Matora LY (2002) The use of fragments of the 85- and 120-MDa plasmids of Azospirillum brasilense Sp245 to study the plasmid rearrangement in this bacterium and to search for homologous sequences in plasmids of Azospirillum brasilense Sp7. Russ J Genet 38: 124131.
  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51: 649660.
  • Konnova ON, Boiko AS, Burygin GL, Fedonenko YP, Matora LY, Konnova SA & Ignatov VV (2008) Chemical and serological studies of liposaccharides of bacteria of the genus Azospirillum. Mikrobiologiia 77: 305312.
  • Kussell E, Kishony R, Balaban NQ & Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169: 18071814.
  • Lerner A, Castro-Sowinski S, Lerner H, Okon Y & Burdman S (2009a) Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. FEMS Microbiol Lett 300: 7582.
  • Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y & Burdman S (2009b) The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology 155: 40584068.
  • Lerner A, Okon Y & Burdman S (2009c) The wzm gene located in the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155: 791804.
  • Lerner A, Valverde A, Castro-Sowinski S, Lerner H, Okon Y & Burdman S (2010) Phenotypic variation in Azospirillum brasilense exposed to starvation. Environ Microbiol Rep 2: 577586.
  • Madison LL & Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63: 2153.
  • Mishra MN, Kumar S, Gupta N, Kaur S, Gupta A & Tripathi AK (2011) An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7. Microbiology 157: 988999.
  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S & Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant–Microbe Interact 21: 10011009.
  • Mora P, Rosconi F, Fraguas LF & Castro-Sowinski S (2008) Azospirillum brasilense Sp7 produces an outer-membrane lectin that specifically binds to surface-exposed extracellular polysaccharide produced by the bacterium. Arch Microbiol 189: 519524.
  • Nur I, Steinitz YL, Okon Y & Henis Y (1981) Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum. J Gen Microbiol 122: 2732.
  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3: 223228.
  • Okon Y, Cakmakci L, Nur I & Chet I (1980) Aerotaxis and chemotaxis in Azospirillum brasilense: a note. Microb Ecol 6: 277280.
  • Pagnussat GC, Lanteri ML & Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132: 12411248.
  • Pedrosa FO & Elmerich C (2007) Regulation of nitrogen fixation and ammonia assimilation in associative and endophytic nitrogen fixing bacteria. Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, Vol 5 (Elmerich C & Newton WE, eds), pp. 4171. Springer-Verlag, Heidelberg.
  • Petrova LP, Matora LY, Burygin GL, Borisov IV & Katsy EI (2005) Analysis of DNA, lipopolysaccharide structure, and some cultural and morphological properties in closely related strains of Azospirillum brasilense. Mikrobiologiia 74: 188193.
  • Pothier JF, Wisniewski-Dye F, Weiss-Gayet M, Moenne-Loccoz Y & Prigent-Combaret C (2007) Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology 153: 36083622.
  • Reis VM, dos Santos Teixeira KR & Pedraza RO (2011) What is expected from the genus Azospirillum as a plant growth-promoting bacteria? Bacteria in Agrobiology: Plant Growth Responses (Maheshwari DK, ed), pp. 123138, Springer-Verlag, Berlin.
  • Remans R, Beebe S, Blair M, et al. (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302: 149161.
  • Spaepen S, Vanderleyden J & Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31: 425448.
  • Spaepen S, Dobbelaere S, Croonenborghs A & Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312: 1523.
  • Spaepen S, Vanderleyden J & Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51: 283320.
  • Star L, Matan O, Dardanelli MS, Kapulnik Y, Burdman S & Okon Y (2011) The Vicia sativa spp. nigraRhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant Soil Doi: 10.1007/s11104-010-0713-7.
  • Steendhoudt O, Keijers V, Okon Y & Vanderleyden J (2001) Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch Microbiol 175: 344352.
  • Stephens BB, Loar SN & Alexandre G (2006) Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J Bacteriol 188: 47594768.
  • Thirunavukkarasu N, Mishra MN, Spaepen S, Vanderleyden J, Gross CA & Tripathi AK (2008) An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense. Microbiology 154: 20962105.
  • Van den Broek D, Bloemberg GV & Lugtenberg B (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7: 16861697.
  • Van der Woude MW & Baumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17: 581611.
  • Van Dommelen A, Croonenborghs A, Spaepen S & Vanderleyden J (2009) Wheat growth promotion through inoculation with an ammonium-excreting mutant of Azospirillum brasilense. Biol Fertil Soils 45: 549553.
  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119: 243254.
  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J & Spaepen S (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61: 723728.
  • Vanbleu E, Marchal K, Lambrecht M, Mathys J & Vanderleyden J (2004) Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol Lett 232: 165172.
  • Vanbleu E, Choudhury BP, Carlson RW & Vanderleyden J (2005) The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environ Microbiol 7: 17691774.
  • Vande Broek A, Lambrecht M, Eggermont K & Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense. J Bacteriol 181: 13381342.
  • Vial L, Lavire C, Mavingui P, Blaha D, Haurat J, Moënne-Loccoz Y, Bally R & Wisniewski-Dye F (2006) Phase variation and genomic architecture changes in Azospirillum. J Bacteriol 188: 53645373.
  • Wadhams GH & Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5: 10241037.
  • Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R & Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189: 494506.
  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250256.
  • Wisniewski-Dye F & Vial L (2008) Phase and antigenic variation mediated by genome modifications. Antonie Van Leeuwenhoek 93: 493515.
  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63: 968989.
  • Ziegelhoffer EC & Donohue TJ (2009) Bacterial responses to photo-oxidative stress. Nat Rev Microbiol 7: 856863.