• fungi;
  • phylogenetics;
  • surrogate methods;
  • anastomosis;
  • virulence;
  • niche specification


Horizontal gene transfer (HGT) is frequently observed in prokaryotes and until recently was assumed to be of limited importance to eukaryotes. However, there is an increasing body of evidence to suggest that HGT is an important mechanism in eukaryotic genome evolution, particularly in unicellular organisms. The transfer of individual genes, gene clusters or entire chromosomes can have significant impacts on niche specification, disease emergence or shift in metabolic capabilities. In terms of genomic sequencing, the fungal kingdom is one of the most densely sampled eukaryotic lineages and is at the forefront of eukaryote comparative genomics and enables us to use fungi to study eukaryotic evolutionary mechanisms including HGT. This review describes the bioinformatics-based methodologies commonly used to locate HGT in fungal genomes and investigates the possible mechanisms involved in transferring genetic material laterally into fungal species. I will highlight a number of fungal HGT events and discuss the impact they have played on fungal evolution and discuss the implications HGT may have on the fungal tree of life.