SEARCH

SEARCH BY CITATION

References

  • Bentley SD, Aanensen D, Mavroidi A et al. (2006) Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Gene 2: e31.
  • Bonofiglio L, García E & Mollerach M (2005) Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis. Curr Microbiol 51: 217221.
  • Bratcher PE, Kim K-H, Kang JH, Hong JY & Nahm MH (2010) Identification of natural pneumococcal isolates expressing serotype 6D by genetic, biochemical and serological characterization. Microbiology 156: 555560.
  • Calix JJ & Nahm MH (2010) A new pneumococcal serotype, 11E, has a variably inactivated wcjE gene. J Infect Dis 202: 2938.
  • Chan PF, O'Dwyer KM, Palmer LM et al. (2003) Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. J Bacteriol 185: 20512058.
  • Chan WT, Nieto C, Harikrishna JA, Khoo SK, Othman RY, Espinosa M & Yeo CC (2011) Genetic regulation of the yefM-yoeB toxin-antitoxin locus of Streptococcus pneumoniae. J Bacteriol 193: 46124625.
  • Dean CR & Goldberg JB (2002) Pseudomonas aeruginosa galU is required for a complete lipopolysaccharide core and repairs a secondary mutation in a PA103 (serogroup O11) wbpM mutant. FEMS Microbiol Lett 210: 277283.
  • Díaz E & García JL (1990) Construction of a broad-host-range pneumococcal promoter-probe plasmid. Gene 90: 163167.
  • Fenoll A, Muñoz R, García E & de la Campa AG (1994) Molecular basis of the optochin-sensitive phenotype of pneumococcus: characterization of the genes encoding the F0 complex of the Streptococcus pneumoniae and Streptococcus oralis H+-ATPases. Mol Microbiol 12: 587598.
  • Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10: 461470.
  • García E, García P & López R (1993) Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol Gen Genet 239: 188195.
  • Henrichsen J (1995) Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 33: 27592762.
  • Höltje JV & Tomasz A (1976) Purification of the pneumococcal N-acetylmuramyl-L-alanine amidase to biochemical homogeneity. J Biol Chem 251: 41994207.
  • Kamerling JP (2000) Pneumococcal polysaccharides: A chemical view. Streptococcus pneumoniae. Molecular Biology & Mechanisms of Disease (Tomasz A, ed), pp. 81114. Mary Ann Liebert, Inc, Larchmont, NY.
  • Kingsford CL, Ayanbule K & Salzberg SL (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8: R22.
  • Lacks S & Hotchkiss RD (1960) A study of the genetic material determining an enzyme activity in Pneumococcus. Biochim Biophys Acta 39: 508517.
  • Llull D, García E & López R (2001) Tts, a processive β-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in pneumococcus and other gram-positive species. J Biol Chem 276: 2105321061.
  • Martin B, Granadel C, Campo N, Hénard V, Prudhomme M & Claverys JP (2010) Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol Microbiol 75: 15131528.
  • Mills GT & Smith EEB (1965) Biosynthesis of capsular polysaccharides in the pneumococcus. Bull Soc Chim Biol 47: 17511765.
  • Mollerach M, López R & García E (1998) Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J Exp Med 188: 20472056.
  • Moscoso M & Claverys JP (2004) Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol 54: 783794.
  • Muñoz R, Mollerach M, López R & García E (1997) Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol 25: 7992.
  • Navarro Llorens JM, Tormo A & Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34: 476495.
  • Nieto C, Pellicer T, Balsa D, Christensen SK, Gerdes K & Espinosa M (2006) The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Mol Microbiol 59: 12801296.
  • Park IH, Pritchard DG, Cartee R, Brandao A, Brandileone MCC & Nahm MH (2007) Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol 45: 12251233.
  • Ramos-Montañez S, Tsui HC, Wayne KJ, Morris JL, Peters LE, Zhang F, Kazmierczak KM, Sham LT & Winkler ME (2008) Polymorphism and regulation of the spxB (pyruvate oxidase) virulence factor gene by a CBS-HotDog domain protein (SpxR) in serotype 2 Streptococcus pneumoniae. Mol Microbiol 67: 685933.
  • Ronda C, García JL, García E, Sánchez-Puelles JM & López R (1987) Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. Eur J Biochem 164: 621624.
  • Ruiz-Cruz S, Solano-Collado V, Espinosa M & Bravo A (2010) Novel plasmid-based genetic tools for the study of promoters and terminators in Streptococcus pneumoniae and Enterococcus faecalis. J Microbiol Methods 83: 156163.
  • Ruiz-Masó JA, Anand SP, Espinosa M, Khan SA & del Solar G (2006) Genetic and biochemical characterization of the Streptococcus pneumoniae PcrA helicase and its role in plasmid rolling circle replication. J Bacteriol 188: 74167425.
  • Sabelnikov AG, Greenberg B & Lacks SA (1995) An extended −10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J Mol Biol 250: 144155.
  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • Sánchez-Puelles JM, Ronda C, García JL, García P, López R & García E (1986) Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur J Biochem 158: 289293.
  • Sevostyanova A, Feklistov A, Barinova N, Heyduk E, Bass I, Klimašauskas S, Heyduk T & Kulbachinskiy A (2007) Specific recognition of the −10 promoter element by the free RNA polymerase s subunit. J Biol Chem 282: 2203322039.
  • Silva E, Marques AR, Fialho AM, Granja AT & Sá-Correia I (2005) Proteins encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG genes, involved in gellan gum biosynthesis, exhibit both dTDP- and UDP-glucose pyrophosphorylase activities. Appl Environ Microbiol 71: 47034712.
  • Varón D, Boylan SA, Okamoto K & Price CW (1993) Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor σB. J Bacteriol 175: 39643971.
  • Ware D, Watt J & Swiatlo E (2005) Utilization of putrescine by Streptococcus pneumoniae during growth in choline-limited medium. J Microbiol 43: 398405.
  • Wilson K (1997) Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology (Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K, eds), pp. 2.4.12.4.5. Green Publishing Associates Inc. and John Wiley & Sons, New York, NY.
  • Wong ML & Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39: 7585.
  • Wu R, Wang W, Yu D, Zhang W, Li Y, Sun Z, Wu J, Meng H & Zhang H (2009) Proteomics analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditional home-made koumiss in Inner Mongolia of China. Mol Cell Proteomics 8: 23212338.