• 1
    Bosecker, K. (1994) Mikrobielle Laugung (Leaching). In: Handbuch der Biotechnologie, 4. edn. (Präve, P., Faust, U., Sittig, W. and Sukatsch, D.A., Eds.), pp. 835–858. Oldenbourg, Munich.
  • 2
    Torma, A.E. (1988) Leaching of metals. In: Biotechnology, Vol. 6b (Rehm, H.J. and Reed, G., Eds.), pp. 367–399. Verlag Chemie, Weinheim.
  • 3
    Dunham, K. (1981) Minerals and ore deposits. In: The Encyclopedia of Mineralogy (Frye, K., Ed.), pp. 270–275. Hutchinson Ross, Stroudbury.
  • 4
    Jakob, A., Stucki, S. and Kuhn, P. (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci. Technol. 29, 24292436.
  • 5
    Bosshard, P.P., Bachofen, R. and Brandl, H. (1996) Metal leaching of fly ash from municipal water incineration by Aspergillus niger. Environ. Sci. Technol. 30, 30663070.
  • 6
    Colmer, A.R. and Hinkle, M.E. (1947) The role of microorganisms in acid mine drainage: A preliminary report. Science 106, 253256.
  • 7
    Glombitza, F., Iske, U. and Bullmann, M. (1988) Mikrobielle Laugung von seltenen Erdelementen und Spurenelementen. BioEngineering 4, 3743.
  • 8
    Barrett, J., Hughes, M.N., Karavaiko, G.I. and Spencer, P.A. (1993) Metal extraction by bacterial oxidation of minerals. In: Inorganic chemistry (Burgess, E.H.J., Ed.), pp. 212–221. Ellis Horwood, Chichester.
  • 9
    Olson, G.J. (1994) Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiol. Lett. 119, 16.
  • 10
    Rossi, G. (1990) Biohydrometallurgy. McGraw-Hill, Hamburg.
  • 11
    Burgstaller, W. and Schinner, F. (1993) Leaching of metals with fungi. J. Biotechnol. 27, 91116.
  • 12
    Bosecker, K. (1993) Bioleaching of silicate manganese ores. Geomicrobiol. J. 11, 195203.
  • 13
    Strasser, H., Burgstaller, W. and Schinner, F. (1994) High yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiol. Lett. 119, 365370.
  • 14
    Sayer, J.A., Raggett, S.L., and Gadd, G.M. (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 99, 987993.
  • 15
    Krebs, W., Bosshard, P.P., Brandl, H. and Bachofen R. (1996) From waste to resource: Metal recovery from solid waste incineration residues by microorganisms. Abstracts of the Spring Meeting of the Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM), Bayreuth. Biospektrum Suppl., March 1996, pp. 98.
  • 16
    Müller, B., Burgstaller, W., Strasser, H., Zanella, A. and Schinner, F. (1995) Leaching of zinc from industrial filter dust with Penicillium, Pseudomonas and Corynebacterium– Citric acid is the leaching agent rather than amino acids. J. Ind. Microbiol. 14, 208212.
  • 17
    Brierley, C.L. (1982) Microbial mining. Sci. Am. 247, 4251.
  • 18
    Ewart, D.K. and Hughes, M.N. (1991) The extraction of metals from ores using bacteria. Adv. Inorg. Chem. 36, 10135.
  • 19
    Huber, H. and Stetter, K.O. (1990) Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal mobilizing bacterium. Appl. Environ. Microbiol. 56, 315322.
  • 20
    Huber, H. and Stetter, K.O. (1989) Thiobacillus prosperus sp. nov. represents a new group of halotolerant metal mobilizing bacteria isolated from marine geothermal environment. Arch. Microbiol. 151, 479485.
  • 21
    Hughes, M.N. and Poole, R.K. (1989) Metals and Microorganisms. Chapman and Hall, London.
  • 22
    Jain, D.K. and Tyagi, R.D. (1992) Leaching of heavy metals from anaerobic sewage sludge by sulfur-oxidizing bacteria. Enzyme Microb. Technol. 14, 376383.
  • 23
    Vachon, P., Tyagi, R.D., Auclair, J.C. and Wilkinson, K.J. (1994) Chemical and biological leaching of aluminum from red mud. Environ. Sci. Technol. 28, 2630.
  • 24
    Brierley, C.L. and Brierley, J.A. (1997) Microbiology for the metal mining industry. In: Manual of Environmental Microbiology (Hurst, C.J., Knudsen, G.R., McInerney, M.J., Stetzenbach, L.D. and Walter M.V., Eds.), pp. 830–841. ASM Press, Washington, DC.
  • 25
    Torma, A.E. (1991) New trends in biohydrometallurgy. In: Mineral Bioprocessing (Smith, R.W. and Misra, M., Eds.), pp. 43–55. The Minerals, Metals and Materials Society, Warrendale.
  • 26
    Aydin, A. (1991) Recovery of vanadium and nickel from the slags and fly ashes of powerplants. 17th International Mineral Processing Congress, Dresden, Vol. 7, pp. 37–44.
  • 27
    Bödeker, H., Schlaak, M., Siefert, E. and de Vries, J. (1994) Elution von Schwermetallen aus Biomüll und Kompost durch schwache organische Säuren. Müll Abfall 12, 816827.
  • 28
    Brooks, C.S. (1995) Hydrometallurical treatment of zinc waste residues. Sep. Sci. Technol. 30, 20552073.
  • 29
    Domer, H., Rüger, V. and Springenschmid R. (1994) Rückgewinnung von Schwermetallen aus Filterstäuben von Müllverbrennungsanlagen und Verwendung der gereinigten Stäube im Bauwesen. BayFORREST Berichtsheft 2/94, 157–163.
  • 30
    Rusin, P.A., Quintana, L., Brainard, J.R., Strietelmeier, B.A., Tait, C.D., Ekberg, S.A., Palmer, P.D., Newton, T.W. and Clark, D.L. (1994) Solubilization of plutonium hydrous oxide by iron-reducing bacteria. Environ. Sci. Technol. 28, 16861690.
  • 31
    Bruynesteyn, A., Hackl, R.P. and Wright, F. (1986) The biotankleach process. In: Gold 100 (King, R.P. Ed.), pp. 448–452. Proceedings on the International Conference on Gold, Vol 2., SAIMM, Johannesburg.
  • 32
    Frederick, R.J. and Egan, M. (1994) Environmentally compatible applications of biotechnology. Bioscience 44, 529535.
  • 33
    Holtum, D.A. and Murray, D.M. (1994) Bacterial heap leaching of refractory gold/sulfide ores. Minerals Eng. 7, 619631.
  • 34
    Anonymous (1989) First commercial bioleaching plant in US prepares for startup. Mining Eng. 41, 281.
  • 35
    Hoffmann, M.R., Arnold, R.G. and Stephanopoulos, G. (1989) Microbial reduction of iron ore. U.S. Patent 4,880,740.
  • 36
    Kleid, D.G., Kohr, W.J. and Thibodeau, F.R. (1990) Processes to recover and reconcentrate gold from its ores. Eur. Pat. Appl. 0 432 935 A1.
  • 37
    Portier, R.J. (1991) Biohydrometallurgical process of ores and microorganisms therefor. U.S. Patent 5,021,088.
  • 38
    Reid, W.W. and Young, J.L. (1991) Microbiological oxidation process for recovering mineral values. Int. Pat. Appl. WO 91/14008.
  • 39
    Rusin, P.A. (1992) Biological processes for recovering heavy metals. Int. Pat. Appl. WO 92/14848.
  • 40
    Hill, D.L. and Brierley, J.A. (1992) Biooxidation process for recovery of metal values from sulfur-containing ore minerals. Eur. Pat. Appl. 0 522 978 A1.
  • 41
    Hunter, R.M., Stewart, F.M., Darsow, T. and Fogelsong, M.L. (1996) Method and apparatus for extracting precious metals from their ores and the product thereof. Int. Pat. Appl. WO 96/00308.
  • 42
    Brunner, H. and Schinner, F. (1991) Bakterielle Laugung von Galvanikschlamm aus der metallverarbeitenden Industrie. Metall 45, 898899.
  • 43
    Bosecker, K. (1986) Microbial recycling of mineral waste products. Acta Biotechnol. 7, 487496.
  • 44
    Schäfer, W. (1982) Bakterielle Laugung von metallhaltigen Industrierückständen. Thesis, University of Dortmund.
  • 45
    Torma, A.E. and Singh, A.K. (1993) Acidolysis of coal fly ash by Aspergillus niger. Fuel 12, 16251530.
  • 46
    Fass, R., Geva, J., Shalita, Z.P., White, M.D., Lezion, R. and Fleming, J.C. (1994) Bioleaching method for the extraction of metals from coal fly ash using Thiobacillus. U.S. Patent 5,278,069.
  • 47
    Shabtai, Y. and Fleminger, G. (1994) Adsorption of Rhodococcus strain GIN-1 (NCIMB 40340) on titanium dioxide and coal fly ash particles. Appl. Environ. Microbiol. 60, 30793088.
  • 48
    Singer, A., Navrot, J. and Shapira, R. (1982) Extraction of aluminum fly ash by commercial and microbiologically produced citric acid. Eur. J. Appl. Microb. Biotechnol. 16, 228230.
  • 49
    Strasser, H., Pümpel, T., Brunner, H. and Schinner, F. (1993) Veredelung von Quarzsand durch mikrobielle Laugung von Eisenoxid-Verunreinigungen. Arch. Lagerst. Forsch. Geol. B.-A 16, 103107.
  • 50
    Ebner, H.G. (1977) Metal extraction from industrial waste with Thiobacilli. In: Bacterial Leaching (Schwartz, W., Ed.), pp. 217–222. Verlag Chemie, Weinheim.
  • 51
    Wenzl, R., Burgstaller, W. and Schinner, F. (1990) Extraction of zinc, copper, and lead from a filter dust by yeasts. Biorecovery 2, 114.
  • 52
    Schinner, F. and Burgstaller, W. (1989) Extraction of zinc from industrial waste by a Penicillium sp. Appl. Environ. Microbiol. 55, 11531156.
  • 53
    Olson, G.J., Sakai, C.K., Parks, E.J. and Brinckman, F.E. (1990) Bioleaching of cobalt from smelter wastes by Thiobacillus ferrooxidans. J. Ind. Microbiol. 6, 4952.
  • 54
    Clark, T.R. and Ehrlich, H.L. (1992) Copper removal from an industrial waste by bioleaching. J. Ind. Microbiol. 9, 213218.
  • 55
    Hahn, M., Willscher, S. and Straube, G. (1993) Copper leaching from industrial wastes by heterotrophic microorganisms. In: Biohydrometallurgical Technologies, Vol. 1 (Torma, A.E., Apel, M.L. and Brierley, C.L., Eds.) pp. 99–108. The Minerals, Metals and Materials Society, Warrendale.
  • 56
    Francis, A.J. and Dodge, C.J. (1994) Anaerobic microbial remobilization of coprecipitated metals. U.S. Patent 5,354,688.
  • 57
    Bowers-Irons, G., Pryor, R., Bowers-Irons, T., Glass, M., Welsh, C. and Blake, R. (1993) The bio-liberation of gallium and associated metals from gallium arsenide or and semiconductor wastes. In: Biohydrometallurgical Technologies, Vol. 1 (Torma, A.E., Apel, M.L. and Brierley, C.L., Eds.) pp. 335–342. The Minerals, Metals and Materials Society, Warrendale.
  • 58
    Gadd, G.M. and White, C. (1993) Microbial treatment of metal pollution – a working biotechnology. Trends Biotechnol. 11, 353359.
  • 59
    Gourdon, R. and Funtowicz, N. (1995) Bioleaching of metals from industrial contaminated soil using sulfuric acid produced by bacterial activity: A feasibility study. In: Contaminated Soils '95 (van der Brink, W.J., Bosman, R. and Arendt, F., Eds.) pp. 1049–1056. Kluwer Academic, Dordrecht.
  • 60
    Atlas, R.M. (1995) Bioremediation. Chem. Eng. News 73, 3242.
  • 61
    Seidel, H., Ondruschka, J. and Stottmeier, U. (1995) Heavy metal removal from contaminated sediments by bacterial leaching: A case study on the field scale. In: Contaminated Soils '95 (van der Brink, W.J., Bosman, R. and Arendt, F., Eds.) pp. 1039–1048. Kluwer Academic, Dordrecht.
  • 62
    Brombacher, C. and Brandl, H. (1994) Abschätzung der Ökotoxizität unbehandelter Elektrofilterasche einer Kehrichtverbrennungsanlage mit dem Pseudomonas-O2-Verbrauchshemmtest. Abstracts of the 53th Annual Meeting of the Swiss Society for Microbiology, Luzern, March 24–25, pp. 69.
  • 63
    Bröer, S. and Krämer, R. (1990) Lysine uptake and exchange in Corynebacterium glutamicum. J. Bacteriol. 172, 72417248.
  • 64
    Krebs, W. (1997) Mikrobiell induzierte Mobilisierung von Metallen aus Rückständen der Kehrichtverbrennung. Thesis, University of Zürich.
  • 65
    Brandl, H., Krebs W., Brombacher, C., Bosshard, P.P., and Bachofen, R. (1997) Microbial systems for metal recycling. Proceedings of R'97 – Recovery, Recycling, Re-Integration, Geneva, February 4–7, Vol. IV, pp. 16–20.
  • 66
    Keating, M. (1993) Erdgipfel 1992 – Agenda für eine nachhaltige Entwicklung. Centre for Our Common Future, Geneva.
  • 67
    OECD (1994) Biotechnology for a Clean Environment: Prevention, Detection, Remediation. Organisation for Economic Cooperation and Development, Paris.