• 1
    Allen O.N. and Allen, E.K. (1981) The Leguminosae: a Source Book of Characteristics, Uses, and Nodulation. University of Wisconsin Press/MacMillan Publishers Ltd., Madison/London, USA/UK.
  • 2
    Worldbank (1984) Groundnut Handbook. Commodity studies and Projections Division of the Economic Analysis and Projections Department.
  • 3
    De Faria, S.M., Lewis, G.P., Sprent, J.I. and Sutherland, J.M. (1989) Occurrence of nodulation in the Leguminosae. New Phytol. 111, 607619.
  • 4
    Van Rossum, D. (1994) The groundnut–Bradyrhizobium symbiosis. Symbiotic, physiological and molecular characterisation. Ph.D. thesis, Vrije Universiteit, Amsterdam, The Netherlands.
  • 5
    McDonald, D. (1985) The ICRISAT groundnut program. In: Proceedings of the regional Groundnut Workshop for Southern Africa (McDonald, D., Ed.), Intern. Crops Res. Inst. for the Semi-Arid Tropics, Patancheru, India.
  • 6
    Fransen, H.J., Vijn, I., Yang, W.C. and Bisseling, T. (1992) Developmental aspects of the rhizobium–legume symbiosis. Plant Mol. Biol. 19, 89107.
  • 7
    Hirsch, A.M. (1992) Developmental biology of legume nodulation. New Phytol. 122, 211237.
  • 8
    Sprent, J.I. (1989) Which steps are essential for the formation of functional legume nodules New Phytol. 111, 129153.
  • 9
    Kijne, J.W. (1992) The Rhizobium infection process. In: Biological Nitrogen Fixation (Stacey, G.S., Evans, H.J. and Burris, R.H., Eds.) pp. 347–398. Routledge, Chapman and Hall, New York, USA.
  • 10
    Nap, J.-P. and Bisseling, T. (1990) Developmental biology of a plant–prokaryote symbiosis: the legume root nodule. Science 250, 948954.
  • 11
    Corby, H.D.L. (1981) The systematic value of leguminous root nodules. In: Advances in legume systematics. Part. 2 (Polhill, R.M. and Raven, P.H., Eds.) pp. 657–669. Royal Botanic Gardens, Kew, UK.
  • 12
    Corby, H.D.L. (1988) Types of rhizobial nodules and their distribution among Leguminosae. Kirkia 13, 53124.
  • 13
    Sen, D., Weaver, R.W. and Bal, A.K. (1986) Structure and organisation of effective peanut and cowpea root nodules induced by rhizobial strain 32H1. J. Exp. Bot. 37, 356363.
  • 14
    Wilson, K.J., Anjaiah, V., Nambiar, P.T.C. and Ausubel, F.M. (1987) Isolation and characterization of symbiotic mutants of Bradyrhizobium sp. (Arachis) strain NC92: mutants with host-specific defects in nodulation and nitrogen fixation. J. Bacteriol. 169, 21772186.
  • 15
    Gorbet, D.W. and Burton, J.C. (1979) A. non-nodulating peanut. Crop Sci. 19, 727728.
  • 16
    Nigam, S.N., Arunachalam, V., Gibbons, R.W., Bandyopadhyay, A. and Nambiar, P.T.C. (1980) Genetics of non-nodulation in groundnut (Arachis hypogaea L.). Oléagineux 35, 453455.
  • 17
    Sprent, J.I. and de Faria, S.M. (1988) Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil 110, 157165.
  • 18
    De Bruijn, F.J., Ying, Y. and Dazzo, F.B. (1995) Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as rice. Plant Soil 174, 225240.
  • 19
    Quispel, A. (1991) A critical evaluation of the prospects for nitrogen fixation with non-legumes. Plant Soil 137, 111.
  • 20
    Pawlowski, K. and Bisseling, T. (1996) Rhizobial and actinorhizal symbioses: what are the shared features The Plant Cell 8, 18991913.
  • 21
    Vance, C.P. (1983) Rhizobium infection and nodulation: a beneficial plant disease? Annu. Rev. Microbiol. 37, 399424.
  • 22
    Djordjevic, M.A., Gabriel, D.W. and Rolfe, B.G. (1987) Rhizobium– The refined parasite of legumes. Annu. Rev. Phytopathol. 25, 145168.
  • 23
    Long, S.R. and Staskawicz, B.J. (1993) Prokaryotic plant parasites. Cell 73, 921935.
  • 24
    Mellor, R.B. and Collinge, D.B. (1995) A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. J. Exp. Bot. 46, 118.
  • 25
    Spaink, H.P. (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu. Rev. Phytopathol. 33, 345368.
  • 26
    McKhann, H.I. and Hirsch A.M. (1994) Does Rhizobium avoid the host response? In: Current Topics in Microbiology and Immunology (Dangl, J., Ed.); Bacterial Pathogenesis in Plants and Animals (Springer Verlag), 139–161.
  • 27
    Ndoye, I., de Billy, F., Vasse, J., Dreyfus, B. and Truchet, G. (1994) Root nodulation of Sesbania rostrata. J. Bacteriol. 176, 10601068.
  • 28
    Rana, D. and Krishnan, H.B. (1995) A new root-nodulatig symbiont of the tropical legume Sesbania, Rhizobium sp. SIN-1, is closely related to R. galegae, a species that nodulates temperate legumes. FEMS Microbiol. Lett. 134, 1925.
  • 29
    Chandler, M.R. (1978) Some observations on infection of Arachis hypogaea L. by Rhizobium. J. Exp. Bot. 29, 749755.
  • 30
    Chandler, M.R., Date, R.A. and Roughley, R.J. (1982) Infection and root-nodule development in Stylosanthes species by Rhizobium. J. Exp. Bot. 33, 4757.
  • 31
    Subba Rao, N.S., Mateos, P.F., Baker, D., Pankratz, H.S., Palma, J., Dazzo, F.B. and Sprent, J.I. (1995) The unique root-nodule symbiosis between Rhizobium and the aquatic legume Neptunia natans (L.f.) Druce. Planta 196, 311320.
  • 32
    Alazard, D. and Duhoux, E. (1990) Development of stem nodules in a tropical forage legume, Aeschynomene afraspera. J. Exp. Bot. 41, 11991206.
  • 33
    Dreyfus, B.L., Alazard, D. and Dommergues, Y.R. (1984) Stem-nodulating rhizobia. In: Current Perspectives in Microbial Ecology (Klug, M.C. and Reddy, C.E., Eds.) pp. 161–169. Am. Soc. Microbiol. USA.
  • 34
    Duhoux, E. (1984) Ontogénèse des nodules caulinaires du Sesbania rostrata (légumineuses). Can. J. Bot. 62, 982994.
  • 35
    Becking, J.H. (1992) The Rhizobium symbiosis of the nonlegume Parasponia. In: Biological Nitrogen Fixation (Stacey, G.S., Evans, H.J. and Burris, R.H., Eds.) pp. 497–559. Routledge, Chapman and Hall, New York, USA.
  • 36
    De Faria, S.M., Hay, G.T. and Sprent, J.I. (1988) Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. J. Gen. Microbiol. 134, 22912296.
  • 37
    Spencer, D., James, E.K., Ellis, G.J., Shaw, J.E. and Sprent, J.I. (1994) Interaction between rhizobia and potato tissues. J. Exp. Bot. 45, 14751482.
  • 38
    Hirsch, A.M., Drake, D., Jacobs, T.W. and Long, S.R. (1985) Nodules are induced on alfalfa roots by Agrobacterium tumefaciens and Rhizobium trifolii containing small segments of the Rhizobium meliloti nodulation region. J. Bacteriol. 161, 223230.
  • 39
    Hrabak, E.M., Truchet, G.L., Dazzo, F.B. and Govers, F. (1985) Characterization of the anomalous infection and nodulation of subterranean clover roots by Rhizobium leguminosarum 1020. J. Gen. Microbiol. 131, 32873302.
  • 40
    Stanley, J. and Cervantes, E. (1991) Biology and Genetics of the broad host range Rhizobium sp. NGR234. J. Appl. Bacteriol. 70, 919.
  • 41
    Wong, C.H., Patchamuthu, R., Meyer z.A., H., Pankhurst, C.E. and Broughton, W.J. (1988) Rhizobia in tropical legumes: ineffective nodulation of Arachis hypogaea L. by fast-growing strains. Soil Biol. Biochem. 20, 677681.
  • 42
    Ranga Rao, V. (1977) Effect of root temperature on the infection processes and nodulation in Lotus and Stylosanthes. J. Exp. Bot. 28, 241259.
  • 43
    Brady, D.J., Edwards, D.G. and Asher, C.J. (1994) Effects of aluminium on the peanut (Arachis hypogaea L.)/Bradyrhizobium symbiosis. Plant Soil 159, 265276.
  • 44
    Allen, O.N. and Allen, E.K. (1940) Response of the peanut plant to inoculation with rhizobia, with special reference to morphological development of the nodules. Botan. Gaz. 102, 121142.
  • 45
    Lancelle, S.A. and Torrey, J.G. (1984) Early development of Rhizobium-induced root nodules of Parasponia rigida. I. Infection and early nodule initiation. Protoplasma 123, 2637.
  • 46
    Mergaert, P., van Montagu, M., Promé, J.-C. and Holsters, M. (1993) Three unusual modifications, a d-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc. Natl. Acad. Sci. USA 90, 15511555.
  • 47
    James, E.K., Sprent, J.I., Sutherland, J.M., McInroy, S.G. and Minchin, F.R. (1992) The structure of nitrogen fixing root nodules on the aquatic mimosoid legume Neptunia plena. Ann. Bot. 69, 173180.
  • 48
    Nambiar, P.T.C., Nigam, S.N., Dart, P.J. and Gibbons, R.W. (1983) Absence of root hairs in non-nodulating groundnut, Arachis hypogaea L. J. Exp. Bot. 34, 484488.
  • 49
    Bhuvaneswari, T.V., Bhagwat, A.A. and Bauer, W.D. (1981) Transient susceptibility of root cells in four common legumes to nodulation by rhizobia. Plant Physiol. 68, 11441149.
  • 50
    Loureiro, M.F., James, E.K., Sprent, J.I. and Franco, A.A. (1995) Stem and root nodules on the tropical wetland legume Aeschynomene fluminensis. New Phytol. 130, 531544.
  • 51
    Vasse, J., de Billy, F. and Truchet, G. (1993) Abortion of infection during the Rhizobium meliloti–alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J. 4, 555566.
  • 52
    Jakobek, J.L. and Lindgren, P.B. (1993) Generalized induction of defense responses in bean is not correlated with the induction of the hypersensitive reaction. Plant Cell 5, 4956.
  • 53
    Staehelin, C., Müller, J., Mellor, R.B., Wiemken, A. and Boller, T. (1992) Chitinase and peroxidase in effective (fix+) and ineffective (fix) soybean nodules. Planta 187, 295300.
  • 54
    Tsien, H.C., Dreyfus, B.L. and Schmidt, E.L. (1983) Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata. J. Bacteriol. 156, 888897.
  • 55
    Olsson, J.E. and Rolfe, B.G. (1985) Stem and root nodulation of the tropical legume Sesbania rostrata by Rhizobium strains ORS571 and WE7. J. Plant Physiol. 121, 199210.
  • 56
    Napoli, C., Dazzo, F. and Hubbell, D. (1975) Ultrastructure of infection and common antigen relationships in Aeschynomene. In: Proceedings of the 5th Australian legume nodulation conference, pp. 35–37, Vincent, J. (Ed.), Brisbane, Australia.
  • 57
    De Faria, S.M., McInroy, S.G. and Sprent, J.I. (1987) The occurrence of infected cells, with persistent infection threads, in legume root nodules. Can. J. Bot. 65, 553558.
  • 58
    Trinick, M.J. (1979) Structure of nitrogen fixing root nodules formed on Parasponia andersonii Planch. Can. J. Microbiol. 25, 565578.
  • 59
    Trinick, M.J. and Hadobas, P.A. (1988) Biology of the Parasponia–Bradyrhizobium symbiosis. Plant Soil 110, 177185.
  • 60
    Sprent, J.I. (1994) Evolution and diversity in the legume–rhizobium symbiosis: chaos theory Plant Soil 161, 110.
  • 61
    Nasibitt, T., James, E.K. and Sprent, J.I. (1992) The evolutionary significance of the legume genus Chamaecrista, as determined by nodule structure. New Phytol. 122, 487492.
  • 62
    Geelen, D., van Montagu, M. and Holsters, M. (1995) Cloning of an Azorhizobium caulinodans endoglucanase gene and analysis of its role in symbiosis. Appl. Environ. Microbiol. 61, 33043310.
  • 63
    Reinhold-Hurek, B., Hurek, T., Claeyssens, M. and van Montagu, M. (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J. Bacteriol. 175, 70567065.
  • 64
    Bal, A.K. and Siddique, A.B.M. (1991) Fine structure of peanut root nodules induced by Nod+Fix strains of Bradyrhizobium with special reference to lipid bodies. Ann. Bot. 67, 309315.
  • 65
    Vaughn, K.C. and Elmore, C.D. (1985) Ultrastructural characterization of nitrogen-fixing stem nodules on Aeschynomene indica. Cytobios 42, 4962.
  • 66
    Loureiro, M.F., de Faria, S.M., James, E.K., Pott, A. and Franco, A.A. (1994) Nitrogen-fixing stem nodules of the legume Discolobium pulchellum Benth. New Phytol. 128, 283295.
  • 67
    VandenBosch, K.A., Rodgers, L.R., Sherrier, D.J. and Kishinevsky, B.D. (1994) A peanot nodule lectin in infected cells and in vacuoles and the extracellular matrix of nodule parenchyma. Plant Physiol. 104, 327337.
  • 68
    Tandon, S.R. (1990) Arachis hypogaea L. root nodules: ultrastructure reveals the presence of uninfected cells and enlarged peroxisomes. In: Nitrogen Fixation: Achievements and Objectives. (Gresshoff, Roth, Newton, Eds.) Chapman and Hall, p. 768.
  • 69
    Jayaram, S. and Bal, A.K. (1991) Oleosomes (lipid bodies) in nitrogen-fixing peanut nodules. Plant Cell Environ. 14, 195203.
  • 70
    Staphorst, J.L. and Strijdom, B.W. (1972) Some observations on the bacteroids in nodules of Arachis spp. and the isolation of Rhizobia from these nodules. Phytophylactica 4, 8792.
  • 71
    Jansen-Van Rensburg, H., Hahn, J.S. and Strijdom, B.W. (1973) Morphological development of Rhizobium bacteroids in nodules of Arachis hypogaea L. Phytophylactica 5, 119122.
  • 72
    Bal, A.K., Sen, D. and Weaver, R.W. (1985) Cell wall (outer membrane) of bacteroids in nitrogen-fixing peanut nodules. Curr. Microbiol. 12, 353356.
  • 73
    Gober, J.W. and Kashket, E.R. (1989) Role of DNA superhelicity in regulation of bacteroid-associated functions of Bradyrhizobium sp. strain 32H1. Appl. Environ. Microbiol. 55, 14201425.
  • 74
    Allen, G.C. and Elkan, G.H. (1990) Growth, respiration, and polypeptide patterns of Bradyrhizobium sp. (Arachis) strain 3G4b20 from succinate- or oxygen-limited continuous cultures. Appl. Environ. Microbiol. 56, 10251032.
  • 75
    Gore, R.S. and Miller, K.J. (1992) Cell surface carbohydrates of microaerobic, nitrogenase-active, continuous cultures of Bradyrhizobium sp. strain 32H1. J. Bacteriol. 174, 78387840.
  • 76
    Crank, S.F., Wilson, K.J., Tewari, S. and Giller, K.E. (1993) A host-specific, nitrogen fixation mutant of Bradyrhizobium: physiology on three host plants. J. Exp. Bot. 44, 13051312.
  • 77
    Ramaswamy, P. and Bal, A.K. (1986) Media-induced changes in the asymbiotic nitrogen-fixing bacteroids of Bradyrhizobium sp. 32H1. Curr. Microbiol. 14, 181185.
  • 78
    Bal, A.K., Hameed, S. and Jayaram, S. (1989) Ultrastructural characteristics of the host–symbiont interface in nitrogen-fixing peanut nodules. Protoplasma 150, 1926.
  • 79
    De Faria, S.M., Franco, A.A., de Jesus, R.M., de S. Menandro, M., Baitello, J.B., Mucci, E.S.F., Döbereiner, J. and Sprent, J.I. (1984) New nodulating legume trees from south-east Brazil. New Phytol. 98, 317328.
  • 80
    van Rhijn, P. and Vanderleyden, J. (1995) The Rhizobium–plant symbiosis. Microbiol. Rev. 59, 124142.
  • 81
    Spaink, H.P. (1994) The molecular basis of the host specificity of Rhizobium bacteria. Antonie van Leeuwenhoek 65, 8198.
  • 82
    Göttfert, M. (1993) Regulation and function of rhizobial nodulation genes. FEMS Microbiol. Rev. 104, 3964.
  • 83
    Fisher, R.F. and Long, S.R. (1992) Rhizobium–plant signal exchange. Nature 357, 655660.
  • 84
    Downie, J.A. (1994) Signalling strategies for nodulation of legumes by rhizobia. Trends Microbiol. 2, 319324.
  • 85
    Breedveld, M.W. and Miller, K.J. (1994) Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58, 145161.
  • 86
    Leigh, J.A. and Coplin, D.L. (1992) Exopolysaccharides in plant–bacterial interactions. Annu. Rev. Microbiol. 46, 307346.
  • 87
    Kannenberg, E.L. and Brewin, N.J. (1994) Host–plant invasion by Rhizobium: the role of cell-surface components. Trends Microbiol. 2, 277283.
  • 88
    Miller, K.J., Hadley, J.A. and Gustine, D.L. (1994) Cyclic β-1,6-1,3-glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max.) host. Plant Physiol. 104, 917923.
  • 89
    Koes, R.E., Quattrocchio, F. and Mol, J.N.M. (1994) The flavonoid biosynthetic pathway in plants. BioEssays 16, 123132.
  • 90
    Gillette, W.K. and Elkan, G.H. (1996) Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants. J. Bacteriol. 178, 27572766.
  • 91
    Hungria, M., Joseph, C.M. and Phillips, D.A. (1991) Anthocyanidins and flavonols, major nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol. 97, 751758.
  • 92
    Hungria, M., Joseph, C.M. and Phillips, D.A. (1991) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol. 97, 759764.
  • 93
    Edwards, C. and Strange, R.N. (1991) Separation and identification of phytoalexins from leaves of groundnut (Arachis hypogaea) and development of a method for their determination by reversed-phase high-performance liquid chromatography. J. Chromatogr. 547, 185193.
  • 94
    Van Rossum, D., Schuurmans, F.P., Gilles, M., Muyotcha, A., van Verseveld, H.W., Stouthamer, A.H. and Boogaard, F.C. (1995) Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl. Environ. Microbiol. 61, 15991609.
  • 95
    Smith, C.J. (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol. 132, 145.
  • 96
    Dixon, R.A., Harrison, M.J. and Lamb, C.J. (1994) Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32, 479501.
  • 97
    Lamb, C.J., Lawton, M.A., Dron, M. and Dixon, R.A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56, 215224.
  • 98
    Lindsay, W.P., Lamb, C.J. and Dixon, R.A. (1993) Microbial recognition and activation of plant defense systems. Trends in Microbiol. 1, 181187.
  • 99
    VanEtten, H.D., Matthews, D.E. and Matthews, P.S. (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27, 143164.
  • 100
    Friend, J. (1985) Plant phenolics, lignification and plant disease. In: Progress in Phytochemistry (Reinhold, L., Harborne, J.B., Swain, T., Eds.), vol. 7, 197–261.
  • 101
    Strange, R.N. and Rao, P.V.S. (1994) The phytoalexin response of groundnut and its role in disease resistance. Oléagineux 49, 227233.
  • 102
    Tropf, S., Lanz, T., Rensing, S.A., Schröder, J. and Schröder, G. (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J. Mol. Evolution 38, 610618.
  • 103
    Schröder, G., Brown, J.W.S. and Schröder, J. (1988) Molecular analysis of resveratrol synthase cDNA, genomic clones and relationship with chalcone synthase. Eur. J. Biochem. 172, 161169.
  • 104
    Parniske, M., Ahlborn, B. and Werner, D. (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J. Bacteriol. 173, 34323439.
  • 105
    Werner, D., Ahlborn, B., Antoun, H., Bernard, S., Bolanos, C., Cooper, J.E., Görge, E., Jacobi, A., Kalliopi, P., Kape, R., Katinakis, P., Kosch, K., Müller, P., Parniske, M., Schmidt, P., Streit, W. and Wetzel, A. (1994) Communication and signal exchange in the Rhizobium/Bradyrhizobium–legume system. Endocytobiosis Cell Res. 10, 515.
  • 106
    Van Brussel, A.A.N., Bakhuizen, R., van Spronsen, P.C., Spaink, H.P., Tak, T., Lugtenberg, B.J.J. and Kijne, J.W. (1992) Induction of pre-infection thread structure in the host plant by lipo-oligosaccharides of Rhizobium. Science 257, 7072.
  • 107
    Noti, J.D., Dudas, B. and Szalay, A.A. (1985) Isolation and characterization of nodulation genes from Bradyrhizobium sp. (Vigna) strain IRc 78. Proc. Natl. Acad. Sci. USA 82, 73797383.
  • 108
    Marvel, D.J., Torrey, J.G. and Ausubel, F.M. (1987) Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts. Proc. Natl. Acad. Sci. USA 84, 13191323.
  • 109
    Messens, E., Geelen, D., van Montagu, M. and Holsters, M. (1991) 7,4′-Dihydroxyflavanone is the major Azorhizobium nod gene-inducing factor present in Sesbania rostrata seedling exudate. Mol. Plant–Microbe Interact. 4, 262267.
  • 110
    Hirsch, A.M. and Fang, Y. (1994) Plant hormones and nodulation: what's the connection? Plant Mol. Biol. 26, 59.
  • 111
    Van de Sande, K., Pawlowski, K., Czaja, I., Wieneke, U., Schell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., van Kammen, A., Franssen, H. and Bisseling, T. (1996) Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273, 370373.
  • 112
    Geurts, R. and Franssen, H. (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol. 112, 447453.
  • 113
    Relić, B., Perret, X., Estrada-Garcia, M.T., Kopcinska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G. and Broughton, W.J. (1994) Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13, 171178.
  • 114
    Relić, B., Talmont, F., Kopcinska, J., Golinowski, W., Promé, J.-C. and Broughton, W.J. (1994) Biological acitivity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Mol. Plant–Microbe Interact. 6, 764774.
  • 115
    Barondes, S.H. (1988) Bifunctional properties of lectins: Lectins redefined. TIBS 13, 480484.
  • 116
    Etzler, M.E. (1985) Plant lectins: Molecular and biological aspects. Annu. Rev. Plant Physiol. 36, 209234.
  • 117
    Chrispeels, M.J. and Raikhel, N.V. (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3, 19.
  • 118
    Bauer, W.D. (1981) Infection of legumes by rhizobia. Annu. Rev. Plant Physiol. 32, 407449.
  • 119
    Bohlool, B.B. and Schmidt, E.L. (1974) Lectins: a possible basis for specificity in the Rhizobium–legume root nodule symbiosis. Science 185, 269271.
  • 120
    Dazzo, F.B. and Hubbell, D.H. (1975) Cross-reactive antigens and lectins as determinants of symbiotic specificity in the Rhizobium-clover association. Appl. Microbiol. 30, 10181033.
  • 121
    Dı́az, C.L., van Spronsen, P.C., Bakhuizen, R., Logman, G.J.J., Lugtenberg, B.J.J. and Kijne, J.W. (1986) Correlation between infection by Rhizobium leguminosarum and lectin on the surface of Pisum sativum L. roots. Planta 168, 350–359.
  • 122
    Dı́az, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J. and Kijne, J.W. (1989) Root lectin as a determinant of host–plant specificity in the Rhizobium–legume symbiosis. Nature 338, 579–581.
  • 123
    Dı́az, C.L., Logman, T.J.J., Stam, H.C. and Kijne, J.W. (1995) Sugar-binding activity of pea lectin expressed in white clover hairy roots. Plant Physiol. 109, 1167–1177.
  • 124
    van Eijsden, R.R., Dı́az, C.L., de Pater, B.S. and Kijne, J.W. (1995) Sugar-binding activity of pea (Pisum sativum) lectin is essential for heterologous infection of transgenic white clover hairy roots by Rhizobium leguminosarum biovar viciae. Plant Mol. Biol. 29, 431–439.
  • 125
    Lotan, R., Skutelsky, E., Danon, D. and Sharon, N. (1975) The purification, composition and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 85188523.
  • 126
    Pueppke, S.G. (1981) Multiple molecular forms of peanut lectin: Classification of isolectins and isolectin distribution among genotypes of the genus Arachis. Arch. Biochem. Biophys. 212, 254261.
  • 127
    Law, I.J., Haylett, T. and Strijdom, B.W. (1988) Differences in properties of peanut seed lectin and purified galactose- and mannose-binding lectins from nodules of peanut. Planta 176, 1927.
  • 128
    Zaluzec, E.J., Zaluzec, M.M., Olsen, K.W. and Pavkovic, S.F. (1991) Crystallization and preliminary X-ray analysis of peanut agglutinin-N6-benzylaminopurine complex. J. Mol. Biol. 219, 151153.
  • 129
    Kishinevsky, B.D., Law, I.J. and Strijdom, B.W. (1988) Detection of lectins is nodulated peanut and soybean plants. Planta 176, 1018.
  • 130
    Law, I.J., Haylett, T., Mort, A.J. and Strijdom, B.W. (1991) Evidence of differences between related galactose-specific lectins from nodules and seeds of peanut. Plant Sci. 75, 123127.
  • 131
    Pueppke, S.G. (1979) Distribution of lectins in the Jumbo Virginia and Spanish varieties of the peanut Arachis hypogaea L. Plant Physiol. 64, 575580.
  • 132
    Law, I.J., Kriel, M.M. and Strijdom, B.W. (1990) Differences in the distribution of mannose- and galactose-binding lectins in peanut tissues. Plant Sci. 71, 129135.
  • 133
    Law, I.J. and Kriel, M.M. (1993) Estimation of functional carbohydrate-binding lectin in peanut tissues by enzyme-linked immunoassay. Plant Sci. 92, 221226.
  • 134
    Kalsi, G., Das, H.R., Babu, C.R. and Das, R.H. (1992) Isolation and characterization of a lectin from peanut roots. Biochim. Biophys. Acta 117, 114119.
  • 135
    Kalsi, G., Das, H.R. and Babu, C.R. (1993) Further characterization of glucose-specific peanut root lectin (PRAII). Indian. J. Biochem. Biophys. 30, 400404.
  • 136
    Kalsi, G., Babu, C.R. and Das, R.H. (1995) Localization of peanut (Arachis hypogaea) root lectin (PRAII) on root surface and its biological significance. Glycoconjugate J. 12, 4550.
  • 137
    Singh, R. and Das, H.R. (1994) Purification of lectins from the stems of peanut plants. Glycoconjugate J. 11, 282285.
  • 138
    Leigh, J.A. and Walker, G.C. (1994) Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genetics 10, 6367.
  • 139
    D'Silva, I. and Podder, S.K. (1994) Peanut agglutinin from callus and cell suspension cultures of Arachis hypogaea L. Plant Cell Reports 14, 5054.
  • 140
    Mody, B.R., Bindra, M.O. and Modi, V.V. (1990) Capsule development and structural characterization of acidic extracellular polysaccharides secreted by cowpea rhizobia. Curr. Microbiol. 20, 145152.
  • 141
    Mody, B., Bindra, M. and Modi, V. (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch. Microbiol. 153, 3842.
  • 142
    Slodki, M.E., Vucelic-Radovic, B., Cadmus, M.C. and Nicholson, J.J. (1989) A new lectin activity in peanut. J. Cell Biochem. 13, 125.
  • 143
    Bhagwat, A.A. and Thomas, J. (1980) Dual binding sites for peanut lectin on rhizobia. J. Gen. Microbiol. 117, 119125.
  • 144
    Pueppke, S.G., Freund, T.G., Schultz, B.C. and Friedman, H.P. (1980) Interaction of lectins from soybean and peanut with rhizobia that nodulate soybean, peanut or both plants. Can. J. Microbiol. 26, 14891497.
  • 145
    Mody, B., Mody, R. and Modi, V. (1990) Peanut agglutinin-induced structural changes in cowpea rhizobia as revealed by freeze-etching. Curr. Microbiol. 21, 243247.
  • 146
    Mody, B., Mody, R. and Modi, V. (1990) Freeze-etch study of the cell envelope of cowpea rhizobia: compartmentalization of the periplasmic space in relation to polysaccharide excretion. Can. J. Microbiol. 36, 373383.
  • 147
    Tsien, H.C. and Schmidt, E.L. (1977) Polarity in the exponential phase Rhizobium japonicum cell. Can. J. Microbiol. 23, 12741284.
  • 148
    Mody, B. and Modi, V.V. (1989) Characterization of peanut agglutinin from tissues of Arachis hypogaea and determination of a novel biological function of purified seed lectin in legume–Rhizobium interaction. Ind. J. Exp. Biol. 27, 519524.
  • 149
    Noel, K.D., Vandenbosch, K.A. and Kulpaca, B. (1986) Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J. Bacteriol. 168, 13921401.
  • 150
    Goethals, K., Leyman, B., Van den Eede, G., van Montagu, M. and Holsters, M. (1994) An Azorhizobium caulinodans ORS571 locus involved in lipopolysaccharide production and nodule formation on Sesbania rostrata stems and roots. J. Bacteriol. 176, 9299.
  • 151
    Puvanesarajah, V., Schell, F.M., Gerhold, D. and Stacey, G. (1987) Cell surface polysaccharides from Bradyrhizobium japonicum and a non-nodulating mutant. J. Bacteriol. 169, 137141.
  • 152
    Miller, K.J., Gore, R.S., Johnson, R., Benesi, A.J. and Reinhold, V.N. (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J. Bacteriol. 172, 136142.
  • 153
    Rolin, D.B., Pfeffer, P.E., Osman, S.F., Swerzgold, B.S., Kappler, F. and Benesi, A.J. (1992) Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim. Biophys. Acta 1116, 215225.
  • 154
    Inón de Iannino, N. and Ugalde, R.A. (1993) Biosynthesis of cyclic β-(1-3),β-(1-6) glucan in Bradyrhizobium spp. Arch. Microbiol. 159, 3038.
  • 155
    Ghittoni, N.E. and Bueno, M.A. (1995) Peanut rhizobia under salt stress: role of trehalose accumulation in strain ATCC 51466. Can. J. Microbiol. 41, 10211030.
  • 156
    Pfeffer, P.E., Bécard, G., Rolin, D.B., Uknalis, J., Cooke, P. and Tu, S. (1994) In vivo nuclear magnetic resonance study of the osmoregulation of phosphocholine-substituted β-1,3;1,6 cyclic glucan and its associated carbon metabolism in Bradyrhizobium japonicum USDA 110. Appl. Environ. Microbiol. 60, 21372146.
  • 157
    Miller, K.J. and Gore, R.S. (1992) Cyclic beta-1,6-1,3 glucans of Bradyrhizobium: Functional analogs of the cyclic beta-1,2-glucans of Rhizobium? Curr. Microbiol. 24, 101104.
  • 158
    Miller, K.J., Kennedy, E.P. and Reinhold, V.N. (1986) Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231, 4851.
  • 159
    Gore, R.S. and Miller, K.J. (1993) Cyclic β-1,6-1,3 glucans are synthesized by Bradyrhizobium japonicum bacteroids within soybean (Glycine max.) root nodules. Plant Physiol. 102, 191194.
  • 160
    Bhagwat, A.A. and Keister, D.L. (1995) Site-directed mutagenesis of the beta-(1,3),beta-(1,6)-d-glucan synthesis locus of Bradyrhizobium japonicum. Mol. Plant–Microbe Interact. 8, 366370.
  • 161
    Bal, A.K. (1993) Electron-dense material in the cell wall/plasma membrane interface of specialized cortical cells of peanut nodules. Cell Biol. Int. 17, 227233.
  • 162
    Siddique, A.B.M. and Bal, A.K. (1992) Morphological and biochemical changes in peanut nodules during photosynthase stress. Can. J. Microbiol. 38, 526533.
  • 163
    Siddique, A.B.M. and Bal, A.K. (1991) Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies. Plant Physiol. 95, 896899.
  • 164
    Denduluri, S. and Bal, A.K. (1992) Oleosomes (lipid bodies) in Sesbania rostrata stem and root nodules. In: New horizons in nitrogen fixation (Palacios, R., Mora, J. and Newton, W.E., Eds.) Kluwer Acad. Publ. p. 542.
  • 165
    Barimah-Asare, J. and Bal, A.K. (1994) Symbiotic nitrogen-fixing root nodules of Lathyrus maritimus (L.) Bigel (beach pea) from Newfoundland shore lines with special reference to oleosomes (lipid bodies). Plant Cell Environ. 17, 115119.
  • 166
    Newcomb, W. and Wood, S.M. (1986) Fine structure of nitrogen-fixing leguminous root nodules from the Canadian arctic. Nordic J. Bot. 6, 609626.
  • 167
    Brown, S.M. and Walsh, K.B. (1994) Anatomy of the legume nodule cortex with respect to nodule permeability. Aust. J. Plant Physiol. 21, 4968.
  • 168
    Law, I.J. and Tonder, H.J. (1992) Localization of mannose- and galactose-binding lectins in an effective peanut nodule. Protoplasma 167, 1018.
  • 169
    Bauchrowitz, M.A., Barker, D.G. and Truchet, G. (1996) Lectin genes are expressed throughout root nodule development and during nitrogen-fixation in the Rhizobium–Medicago symbiosis. The Plant J. 9, 3143.
  • 170
    Kardailsky, I.V., Sherrier, D.J. and Brewin, N.J. (1996) Identification of a new pea gene, PsNlec1, encoding a lectin-like glycoprotein isolated from the symbiosomes of root nodules. Plant Physiol. 111, 4960.
  • 171
    Fowden, L. (1954) The nitrogen metabolism of groundnut plants: The role of η-methyleneglutamine and γ-methyleneglutamic acid. Ann. Bot. 18, 417440.
  • 172
    Winter, H.C., Powell, G.K. and Dekker, E.E. (1981) 4-Methyleneglutamine in peanut plants: dynamics of formation, levels, turnover in relation to other free amino acids. Plant Physiol. 68, 588593.
  • 173
    Schubert, K.R. (1986) Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Annu. Rev. Plant Physiol. 37, 539574.
  • 174
    Venkateswara Rao, N., Subhash Reddy, R. and Sivarama Sastry, K. (1988) Allantoinases of nodulated Arachis hypogaea. Phytochemistry 27, 693695.
  • 175
    Peoples, M.B., Pate, J.S., Atkins, C.A. and Bergersen, F.J. (1986) Nitrogen nutrition and xylem sap composition of peanut (Arachis hypogaea L. cv Virginia bunch). Plant Physiol. 82, 946951.
  • 176
    Goto, S., Inanaga, S. and Kumazawa, K. (1987) Xylem sap composition of nodulated and non-nodulated groundnut plants. Soil Sci. Plant Nutr. 33, 619627.
  • 177
    Peoples, M.B., Atkins, C.A., Pate, J.S., Chong, K., Faizah, A.W., Suratmini, P., Nurhayati, D.P., Bagnall, D.J. and Bergersen, F.J. (1991) Re-evaluation of the role of ureides in the xylem transport of nitrogen in Arachis species. Physiol. Plantarum 83, 560567.
  • 178
    Newcomb, E.H. and Tandon, Sh.R. (1981) Uninfected cells of soybean root nodules: ultrastructure suggests key role in ureide production. Science 212, 13941396.
  • 179
    Newcomb, E.H., Tandon, Sh.R. and Kowal, R.R. (1985) Ultrastructural specialization for ureide production in uninfected cells of soybean root nodules. Protoplasma 125, 112.
  • 180
    Newcomb, E.H., Kaneko, Y. and VandenBosch, K.A. (1989) Specialization of the inner cortex for ureide production in soybean root nodules. Protoplasma 150, 150159.
  • 181
    Tandon, S.R. (1995) Electron microscopy of uninfected and infected cells in Arachis hypogaea L. root nodules. In: Nitrogen fixation: fundamentals and applications. (Tikhonovich, Provorov, Romanov, Newton, Eds.) Kluwer Acad. Publishers, p. 501.
  • 182
    Kaneko, Y. and Newcomb, E.H. (1990) Specialization for ureide biogenesis in the root nodules of black locust (Robinia pseudoacacia L.), an amide exporter. Protoplasma 157, 102111.
  • 183
    Yoneyama, T. and Kondo, M. (1990) Sesbania spp., Aeschynomene indica and Crotolaria spp. are amide-exporters. Soil Sci. Plant Nutr. 36, 689693.
  • 184
    Ofek, I., Goldhar, J., Keisari, Y. and Sharon, N. (1995) Nonopsonic phagocytosis of microorganisms. Annu. Rev. Microbiol. 49, 239276.
  • 185
    Mirelman, D. (1987) Ameba-bacterium relationship in amebiasis. Microbiol. Rev. 51, 272284.
  • 186
    Ofek, I. and Sharon, N. (1988) Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect. Immun. 56, 539547.
  • 187
    Moulder, J.W. (1985) Comparative biology of intracellular parasitism. Microbiol. Rev. 49, 298337.
  • 188
    Russell, D.G. (1995) Of microbes and macrophages: entry, survival and persistence. Curr. Opin. Immunol. 7, 479484.
  • 189
    Mellor, R.B. (1989) Bacteroids in the Rhizobium–legume symbiosis inhabit a plant internal lytic compartment: Implications for other microbial endosymbioses. J. Exp. Bot. 40, 831839.