• 1
    Barnett, J.A., Payne, R.W. and Yarrow, D. (1990) Yeasts: Characteristics and Identification, 2nd edn., Cambridge University Press, Cambridge.
  • 2
    Barnett, J.A. (1976) The utilization of sugars by yeasts. Adv. Carbohydr. Chem. Biochem. 32, 125234.
  • 3
    Gancedo, C. and Serrano, R. (1989) Energy-yielding metabolism. In: The Yeasts (Rose, A.H. and Harrison, J.S., Eds.), Vol. 3, pp. 205–259. Academic Press, London.
  • 4
    Loureiro-Dias, M.C. (1988) Movement of protons to glucose transport in yeasts. A comparative study among 248 yeast strains. Antonie van Leeuwenhoek 54, 331343.
  • 5
    Van Urk, H., Postma, E., Scheffers, W.A. and van Dijken, J.P. (1989) Glucose transport in Crabtree-positive and Crabtree-negative yeasts. J. Gen. Microbiol. 135, 23992406.
  • 6
    Weusthuis, R.A., Pronk, J.T., van den Broek, P.J.A. and van Dijken, J.P. (1994) Chemostat cultivation as a tool for studies on sugar transport in yeast. Microbiol. Rev. 58, 616630.
  • 7
    Postma, E., Kuiper, A., Tomasouw, W.F., Scheffers, W.A. and van Dijken, J.P. (1989) The competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Appl. Environ. Microbiol. 55, 32143220.
  • 8
    Galazzo, J.L. and Bailey, J.E. (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb. Technol. 12, 162172.
  • 9
    Cortassa, S., Aon, J.C. and Aon, M.A. (1995) Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources. Biotechnol. Bioeng. 47, 193208.
  • 10
    Bisson, L.F., Coons, D.M., Kruckeberg, A.L. and Lewis, D.A. (1993) Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol. 28, 259308.
  • 11
    Thevelein, J.M. and Hohmann, S. (1995) Trehalose synthase, guard to the gate of glycolysis in yeast? Trends Biochem. Sci. 20, 310.
  • 12
    Walsh, M.C., Scholte, M., Valkier, J., Smits, H.-P. and van Dam, K. (1996) Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J. Bacteriol. 178, 25932597.
  • 13
    Özcan, S., Dover, J., Rosenwald, A.G., Woelfl, S. and Johnston, M. (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc. Natl. Acad. Sci. USA 93, 1242812432.
  • 14
    Lagunas, R. (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 104, 229242.
  • 15
    Kruckeberg, A.L. (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch. Microbiol. 166, 283292.
  • 16
    Ciriacy, M. and Reifenberger, E. (1997) Hexose transport. In: Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.-D., Eds.), pp. 45–65. Technomic, Lancaster, PA.
  • 17
    Marger, M.D. and Saier, M.H. (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18, 1320.
  • 18
    Mueckler, M. (1994) Facilitative glucose transporters. Eur. J. Biochem. 219, 713725.
  • 19
    Bisson, L.F. and Fraenkel, D.G. (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80, 17301734.
  • 20
    Coons, D.M., Boulton, R.B. and Bisson, L.F. (1995) Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae. J. Bacteriol. 177, 32523258.
  • 21
    Reifenberger, E., Boles, E. and Ciriacy, M. (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 245, 324333.
  • 22
    Walsh, M.C., Smits, H.-P., Scholte, M. and van Dam, K. (1994) Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J. Bacteriol. 176, 953958.
  • 23
    Bisson, L.F. and Fraenkel, D.G. (1984) Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J. Bacteriol. 159, 10131017.
  • 24
    Özcan, S. and Johnston, M. (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15, 15641572.
  • 25
    Reifenberger, E., Freidel, K. and Ciriacy, M. (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 16, 157167.
  • 26
    Bisson, L.F. (1988) High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control. J. Bacteriol. 170, 48384845.
  • 27
    Riballo, E. and Lagunas, R. (1994) Involvement of endocytosis in catabolite inactivation of the K+ and glucose transport systems in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 121, 7780.
  • 28
    Horak, J. and Wolf, D.H. (1997) Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J. Bacteriol. 179, 15411549.
  • 29
    Liang, H. and Gaber, R.F. (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by SNF3-regulated expression of HXT6. Mol. Biol. Cell 7, 19531966.
  • 30
    Gamo, F.J., Moreno, E. and Lagunas, R. (1995) The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion. Yeast 11, 13931398.
  • 31
    Fuhrmann, G.F. and Völker, B. (1992) Regulation of glucose transport in Saccharomyces cerevisiae. J. Biotechnol. 27, 115.
  • 32
    Fuhrmann, G.F. and Völker, B. (1993) Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. Biochim. Biophys. Acta 1145, 180182.
  • 33
    Reinhardt, C., Völker, B., Martin, H.-J., Kneiseler, J. and Fuhrmann, G.F. (1997) Different activation energies in glucose uptake in Saccharomyces cerevisiae DFY1 suggest two transport systems. Biochim. Biophys. Acta 1325, 126134.
  • 34
    Bisson, L.F., Neigeborn, L., Carlson, M. and Fraenkel, D.G. (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J. Bacteriol. 169, 16561662.
  • 35
    Celenza, J.L., Marshall-Carlson, L. and Carlson, M. (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc. Natl. Acad. Sci. USA 85, 21302134.
  • 36
    Marshall-Carlson, L., Neigeborn, L., Coons, D., Bisson, L. and Carlson, M. (1991) Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant. Genetics 128, 505512.
  • 37
    Özcan, S., Leong, T. and Johnston, M. (1996) Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol. Cell. Biol. 16, 64196426.
  • 38
    Coons, D.M., Vagnoli, P. and Bisson, L.F. (1997) The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13, 920.
  • 39
    Neigeborn, L. and Carlson, M. (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845858.
  • 40
    Neigeborn, L., Schwartzberg, P., Reed, R. and Carlson, M. (1986) Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than previously isolated missense mutations. Mol. Cell. Biol. 6, 35693574.
  • 41
    Marshall-Carlson, L., Celenza, J.L., Laurent, B.C. and Carlson, M. (1990) Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 11051115.
  • 42
    Wölfl, S., Hanemann, V. and Saluz, H.P. (1996) Analysis of a 26756 bp segment from the left arm of yeast chromosome IV. Yeast 12, 15491554.
  • 43
    Vallier, L.G., Coons, D., Bisson, L.F. and Carlson, M. (1994) Altered regulatory responses of glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136, 12791285.
  • 44
    Özcan, S., Vallier, L.G., Flick, J.S., Carlson, M. and Johnston, M. (1997) Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose. Yeast 13, 127137.
  • 45
    Özcan, S. and Johnston, M. (1996) Two different repressors collaborate to restrict expression of yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol. Cell. Biol. 16, 55365545.
  • 46
    Flick, J.S. and Johnston, M. (1991) GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol. Cell. Biol. 11, 51015112.
  • 47
    Keleher, C.A., Redd, M.J., Schultz, J., Carlson, M. and Johnson, A.D. (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68, 709719.
  • 48
    Yang, Z. and Bisson, L.F. (1996) The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12, 14071419.
  • 49
    Theodoris, G., Fong, N.M., Coons, D.M. and Bisson, L.F. (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137, 957966.
  • 50
    Wendell, D.L. and Bisson, L.F. (1994) Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. J. Bacteriol. 176, 37303737.
  • 51
    Lewis, D.A. and Bisson, L.F. (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol. Cell. Biol. 11, 38043813.
  • 52
    Özcan, S., Freidel, K., Leuker, A. and Ciriacy, M. (1993) Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J. Bacteriol. 175, 55205528.
  • 53
    Entian, K.D. (1980) Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178, 633637.
  • 54
    Gancedo, J.M. (1992) Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297313.
  • 55
    Tu, J. and Carlson, M. (1995) REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14, 59395946.
  • 56
    Hirayama, T., Maeda, T., Saito, H. and Shinozaki, K. (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 249, 127138.
  • 57
    Posas, F., Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., Thai, T.C. and Saito, H. (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 ‘two-component’ osmosensor. Cell 86, 865875.
  • 58
    Maeda, T., Takekawa, M. and Saito, H. (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554558.
  • 59
    Maeda, T., Wurgler-Murphy, S.M. and Saito, H. (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242245.
  • 60
    Albertyn, J., Hohmann, S., Thevelein, J.M. and Prior, B.A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol. Cell. Biol. 14, 41354144.
  • 61
    Kruckeberg, A.L. and Bisson, L.F. (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol. Cell. Biol. 10, 59035913.
  • 62
    Wendell, D.L. and Bisson, L.F. (1993) Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies. J. Bacteriol. 175, 76897696.
  • 63
    Nehlin, J.O. and Ronne, H. (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 9, 28912898.
  • 64
    Lutfiyya, L.L. and Johnston, M. (1996) Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16, 47904797.
  • 65
    Celenza, J.L. and Carlson, M. (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 11751180.
  • 66
    Schüller, H.J. and Entian, K.D. (1987) Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol. Gen. Genet. 209, 366373.
  • 67
    Ko, C.H., Liang, H. and Gaber, R.F. (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 638648.
  • 68
    Prior, C., Fukuhara, H., Blaisonneau, J. and Wésolowski-Louvel, M. (1993) Low-affinity glucose carrier gene LGT1 of Saccharomyces cerevisiae, a homologue of the Kluyveromyces lactis RAG1 gene. Yeast 9, 13731377.
  • 69
    Reifenberger, E. (1995) Genetische und physiologische Untersuchungen zum Hexosetransport in der Hefe Saccharomyces cerevisiae. PhD Thesis, Universität Düsseldorf.
  • 70
    Nelissen, B., Mordant, P., Jonniaux, J.L., De Wachter, R. and Goffeau, A. (1995) Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett. 377, 232236.
  • 71
    Nourani, A., Wésolowski-Louvel, M., Delaveau, T., Jacq, C. and Delahodde, A. (1997) Multiple drug resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters (submitted).
  • 72
    Balzi, E. and Goffeau, A. (1994) Genetics and biochemistry of yeast multidrug resistance. Biochem. Biophys. Acta 1187, 152162.
  • 73
    Balzi, E. and Goffeau, A. (1995) Yeast multidrug resistance: the PDR network. J. Bioenerg. Biomembr. 27, 7176.
  • 74
    André, B. (1995) An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11, 15751611.
  • 75
    Higgins, C.F. (1995) The ABC of channel regulation. Cell 82, 693696.
  • 76
    Vera, J.C., Castillo, G.R. and Rosen, O.M. (1991) A possible role for a mammalian facilitative hexose transporter in the development of resistance to drugs. Mol. Cell. Biol. 11, 34073418.
  • 77
    Tschopp, J.F., Emr, S.D., Field, C. and Schekman, R. (1986) GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J. Bacteriol. 166, 313318.
  • 78
    Szkutnicka, K., Tschopp, J.F., Andrews, L. and Cirillo, V.P. (1989) Sequence and structure of the yeast galactose transporter. J. Bacteriol. 171, 44864493.
  • 79
    Nehlin, J.O., Carlberg, M. and Ronne, H. (1989) Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene 85, 313319.
  • 80
    Ramos, J., Szkutnicka, K. and Cirillo, V.P. (1989) Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J. Bacteriol. 171, 35393544.
  • 81
    Huibregtse, J.M., Good, P.D., Marczynski, G.T., Jaehning, J.A. and Engelke, D.R. (1993) Gal4 protein binding is required but not sufficient for derepression and induction of GAL2 expression. J. Biol. Chem. 268, 2221922222.
  • 82
    Johnston, M. and Carlson, M. (1992) Regulation of carbon and phosphate utilization. In: The Molecular and Cellular Biology of the Yeast Saccharomyces (Broach, J., Jones, E.W. and Pringle, J., Eds.), Vol. 2, pp. 193–281. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • 83
    Meyer, J., Walker-Jonah, A. and Hollenberg, C.P. (1991) Galactokinase encoded by GAL1 is a bifunctional protein required for the induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype of Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 54545461.
  • 84
    Zenke, F., Engels, R., Vollenbroich, V., Meyer, J., Hollenberg, C.P. and Breunig, K. (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272, 16621665.
  • 85
    Matern, H. and Holzer, H. (1977) Catabolite inactivation of the galactose transport system in yeast. J. Biol. Chem. 252, 63996402.
  • 86
    Riballo, E., Herweijer, M., Wolf, D.H. and Lagunas, R. (1995) Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J. Bacteriol. 177, 56225627.
  • 87
    Medintz, I., Jiang, H., Han, E.-K., Cui, W. and Michels, C.A. (1996) Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. J. Bacteriol. 178, 22452254.
  • 88
    Nishizawa, K., Shimoda, E. and Kasahara, M. (1995) Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters. J. Biol. Chem. 270, 24232426.
  • 89
    Kasahara, M., Shimoda, E. and Maeda, M. (1996) Transmembrane segment 10 is important for substrate recognition in GAL2 and HXT2 sugar transporters in the yeast Saccharomyces cerevisiae. FEBS Lett. 389, 174178.
  • 90
    Arbuckle, M.I., Kane, S., Porter, L.M., Seatter, M.J. and Gould, G.W. (1996) Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: Expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35, 1651916527.
  • 91
    Han, E.K., Cotty, F., Sottas, C., Jiang, H. and Michels, C.A. (1995) Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol. Microbiol. 17, 10931107.
  • 92
    Nikawa, J., Tsukagoshi, Y. and Yamashita, S. (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J. Biol. Chem. 266, 1118411191.
  • 93
    Bun Ya, M., Nishimura, M., Harashima, S. and Oshima, Y. (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell. Biol. 11, 32293238.
  • 94
    Zhao, S., Douglas, N.W., Heine, M.J.S., Williams, G.M., Winter-Larsen, H.C. and Meaden, P.G. (1994) The STL1 gene of Saccharomyces cerevisiae is predicted to encode a sugar transporter-like protein. Gene 146, 215219.
  • 95
    Santos, E., Rodiguez, L., Elorza, M.V. and Setandreu, R. (1982) Uptake of sucrose by Saccharomyces cerevisiae. Arch. Biochem. Biophys. 216, 652660.
  • 96
    Kuhn, C. and Frommer, W.B. (1995) A novel zinc finger protein encoded by a couch potato homologue from Solanum tuberosum enables a sucrose transport-deficient yeast strain to grow on sucrose. Mol. Gen. Genet. 247, 759763.
  • 97
    Barnett, J.A. (1997) Sugar utilization by Saccharomyces cerevisiae. In: Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.-D., Eds.), pp. 35–43. Technomic, Lancaster, PA.
  • 98
    Nwaka, S., Mechler, B. and Holzer, H. (1996) Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett. 386, 235238.
  • 99
    Birnbaum, M. (1992) The insulin-sensitive glucose transporter. In: Molecular Biology of Receptors and Transporters: Bacterial and Glucose Transporters (Friedlander, M. and Mueckler, M., Eds.), pp. 239–298. Academic Press, San Diego, CA.
  • 100
    Waddell, I.D., Zomerschoe, A.G., Voice, M.W. and Burchell, A. (1992) Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose-transport protein GLUT 2. Biochem. J. 286, 173177.
  • 101
    Abeijon, C., Robbins, P.W. and Hirschberg, C.B. (1996) Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. Proc. Natl. Acad. Sci. USA 93, 59635968.
  • 102
    Miura, N., Ishida, N., Hoshino, M., Yamauchi, M., Hara, T., Ayusawa, D. and Kawakita, M. (1996) Human UDP-galactose translocator: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator. J. Biochem. 120, 236241.
  • 103
    Ishida, N., Miura, N., Yoshioka, S. and Kawakita, M. (1996) Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belonging to the nucleotide-sugar transporter gene family. J. Biochem. (Tokyo) 120, 10741078.
  • 104
    Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. FASEB J. 7, 540550.
  • 105
    Gamo, F.-J., Lafuente, M.J. and Gancedo, C. (1994) The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 176, 74237429.
  • 106
    Blázquez, M.A., Gamo, F.-J. and Gancedo, C. (1995) A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae. FEBS Lett. 377, 197200.
  • 107
    Schulte, F. and Ciriacy, M. (1995) HTR1/MTH1 encodes a repressor for HXT genes. Yeast 11 (special issue), S239.
  • 108
    Hubbard, E.J., Jiang, R. and Carlson, M. (1994) Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 19721978.
  • 109
    Tillman, T.S., Ganster, R.W., Jiang, R., Carlson, M. and Schmidt, M.C. (1995) STD1 (MSN3) interacts directly with the TATA-binding protein and modulates transcription of the SUC2 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 23, 31743180.
  • 110
    Busturia, A. and Lagunas, R. (1986) Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J. Gen. Microbiol. 132, 379385.
  • 111
    Ramos, J., Szkutnicka, K. and Cirillo, V.P. (1988) Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae. J. Bacteriol. 170, 53755377.
  • 112
    Busturia, A. and Lagunas, R. (1985) Identification of two forms of the maltose transport system in Saccharomyces cerevisiae and their regulation by catabolite inactivation. Biochim. Biophys. Acta 820, 324326.
  • 113
    Horak, J. (1997) Yeast nutrient transporters. Biochim. Biophys. Acta 1331, 4179.
  • 114
    Lucero, P. and Lagunas, R. (1997) Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. FEMS Microbiol. Lett. 147, 273277.
  • 115
    Ramos, J. and Cirillo, V.P. (1989) Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae. J. Bacteriol. 171, 35453548.
  • 116
    Riballo, E., Mazón, M.J. and Lagunas, R. (1994) cAMP-dependent protein kinase is not involved in catabolite inactivation of the transport of sugars in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1192, 143146.
  • 117
    Nevado, J., Navarro, M.A. and Heredia, C.F. (1993) Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae. Yeast 9, 111119.
  • 118
    Nevado, J. and Heredia, C.F. (1996) Galactose induces in Saccharomyces cerevisiae sensitivity of the utilization of hexoses to inhibition by d-glucosamine. Can. J. Microbiol. 42, 611.
  • 119
    Oehlen, L.J.W.M., Scholte, M.E., de Koning, W. and van Dam, K. (1994) Decrease in glycolytic flux in Saccharomyces cerevisiae cdc35-1 cells at restrictive temperature correlates with a decrease in glucose transport. Microbiology 140, 18911898.
  • 120
    Silljé, H.H.W., ter Schure, E.G., Verkleij, A.J., Boonstra, J. and Verrips, C.T. (1996) The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport. Microbiology 142, 17651773.
  • 121
    Nevado, J., Navarro, M.A. and Heredia, C.F. (1994) Transport of hexoses in yeast. Re-examination of the sugar phosphorylation hypothesis with a new experimental approach. Yeast 10, 5965.
  • 122
    Smits, H.-P., Smits, G.L., Postma, P.W., Walsh, M.C. and van Dam, K. (1996) High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes. Yeast 12, 439447.
  • 123
    Walsh, M.C., Smits, H.-P. and van Dam, K. (1994b) Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae cells, but not the activity of glucose transport. Yeast 10, 1553–1558.
  • 124
    Fuhrmann, G.F., Völker, B., Sander, S. and Potthast, M. (1989) Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressed Saccharomyces cells. Experientia 45, 10181023.
  • 125
    Bisson, L.F. and Fraenkel, D.G. (1983) Transport of 6-deoxyglucose in Saccharomyces cerevisiae. J. Bacteriol. 155, 9951000.
  • 126
    Clifton, D., Walsh, R.B. and Fraenkel, D.G. (1993) Functional studies of yeast glucokinase. J. Bacteriol. 175, 32893294.
  • 127
    Rizzi, M., Theobald, U., Querfurth, E., Baltes, M. and Reuss, M. (1996) In-vivo investigation of glucose transport in Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 316327.
  • 128
    Azam, F. and Kotyk, A. (1969) Glucose 6-phosphate as regulator of monosaccharide transport in baker's yeast. FEBS Lett. 2, 333335.
  • 129
    Alonso, A., Pascual, C., Romay, C., Herrera, L. and Kotyk, A. (1989) Inhibition of hexose transport by glucose in a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae. Folia Microbiol. (Prague) 34, 273278.
  • 130
    Maitra, P.K. (1971) Glucose and fructose metabolism in a phosphoglucoseisomerase mutant of Saccharomyces cerevisiae. J. Bacteriol. 107, 759767.
  • 131
    Perea, J. and Gancedo, C. (1978) Glucose transport in a glucosephosphate isomeraseless mutant of Saccharomyces cerevisiae. Curr. Microbiol. 1, 209211.
  • 132
    Teusink, B., Walsh, M.C., van Dam, K., Gustafsson, L. and Westerhoff, H.V. (1996) The extent to which the glycolytic flux in Saccharomyces cerevisiae is controlled by the glucose transport system varies with the extracellular glucose concentration. In: BioThermoKinetics of the Living Cell (Westerhoff, H.V., Snoep, J.L., Wijker, J.E., Sluse, F.E. and Kholodenko, B.N., Eds.), pp. 417–421. BioThermoKinetics, Amsterdam.
  • 133
    Postma, P.W., Lengeler, J.W. and Jacobson, G.R. (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57, 543594.
  • 134
    Efrat, S., Tal, M. and Lodish, H.F. (1994) The pancreatic β-cell glucose sensor. Trends Biochem. Sci. 19, 535538.
  • 135
    Boles, E., Müller, S. and Zimmermann, F.K. (1996) A multi-layered sensory system controls yeast glycolytic gene expression. Mol. Microbiol. 19, 641642.
  • 136
    Boles, E., Zimmermann, F.K. and Thevelein, J.M. (1997) Metabolic signals. In: Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.-D., Eds.), pp. 379–407. Technomic, Lancaster, PA.
  • 137
    Thevelein, J.M. (1994) Signal transduction in yeast. Yeast 10, 17531790.
  • 138
    Boles, E. and Zimmermann, F.K. (1993) Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch. Microbiol. 160, 324328.
  • 139
    Boles, E., Heinisch, J. and Zimmermann, F.K. (1993) Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast 9, 761770.
  • 140
    Müller, S., Boles, E., May, M. and Zimmermann, F.K. (1995) Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177, 45174519.
  • 141
    Gasnier, B. (1987) Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim. Biophys. Acta 903, 425433.
  • 142
    Spencer-Martins, I. and van Uden, N. (1985) Inactivation of active glucose transport in Candida wickerhamii is triggered by exocellular glucose. FEMS Microbiol. Lett. 28, 277279.
  • 143
    Cho, T., Hagihara, Y., Kaminishi, H. and Watanabe, K. (1994) The relationship between the glucose uptake system and growth cessation in Candida albicans. J. Med. Vet. Mycol. 32, 461466.
  • 144
    Alcorn, M.E. and Griffin, C.C. (1978) A kinetic analysis of d-xylose transport in Rhodotorula glutinis. Biochim. Biophys. Acta 510, 361371.
  • 145
    Barnett, J.A. and Sims, A.P. (1976) Some physiological observations on the uptake of d-glucose and 2-deoxy-d-glucose by starving and exponentially growing yeasts. Arch. Microbiol. 111, 185192.
  • 146
    Alamäe, T. and Simisker, J. (1994) Isolation and preliminary characterization of Pichia pinus mutants insensitive to glucose repression. Yeast 10, 14591466.
  • 147
    Schneider, R.P. and Wiley, W.R. (1971) Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J. Bacteriol. 106, 487492.
  • 148
    Pronk, J.T., Steensma, H.Y. and van Dijken, J.P. (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 16071633.
  • 149
    Does, A.L. and Bisson, L.F. (1989) Comparison of glucose uptake kinetics in different yeasts. J. Bacteriol. 171, 13031308.
  • 150
    Deák, T. (1978) On the existence of H+-symport in yeasts. A comparative study. Arch. Microbiol. 1978, 20052011.
  • 151
    Kotyk, A. and Höfer, M. (1965) Uphill transport of sugars in the yeast Rhodotorula gracilis. Biochem. Biophys. Acta 102, 410422.
  • 152
    Postma, E., Scheffers, W.A. and van Dijken, J.P. (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeast Candida utilis CBS 621: a continuous-culture study. J. Gen. Microbiol. 134, 11091116.
  • 153
    Rodrigues de Sousa, H., Madeira-Lopes, A. and Spencer-Martins, I. (1995) The significance of active fructose transport and maximum temperature for growth in the taxonomy of Saccharomyces sensu stricto. Syst. Appl. Microbiol. 18, 4451.
  • 154
    Chen, X.J., Wésolowski-Louvel, M. and Fukuhara, H. (1992) Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol. Gen. Genet. 233, 97105.
  • 155
    Wésolowski-Louvel, M., Goffrini, P., Ferrero, I. and Fukuhara, H. (1992) Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Mol. Gen. Genet. 233, 8996.
  • 156
    Billard, P., Ménart, S., Blaisonneau, J., Bolotin-Fukuhara, M., Fukuhara, H. and Wésolowski-Louvel, M. (1996) Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J. Bacteriol. 178, 58605866.
  • 157
    Riley, M.I., Sreekrishna, K., Bhairi, S. and Dickson, R.C. (1987) Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol. Gen. Genet. 208, 145151.
  • 158
    Chang, Y.D. and Dickson, R.C. (1988) Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis. Presence of an unusual transcript structure. J. Biol. Chem. 263, 1669616703.
  • 159
    Prior, C., Mamessier, P., Fukuhara, H., Chen, X.J. and Wésolowski-Louvel, M. (1993) The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol. Cell. Biol. 13, 38823889.
  • 160
    Blaisonneau, J., Fukuhara, H. and Wésolowski-Louvel, M. (1997) The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol. Gen. Genet. 253, 469477.
  • 161
    Robinson, L.C., Hubbard, E.J., Graves, P.R., DePaoli-Roach, A.A., Roach, P.J., Kung, C., Haas, D.W., Hagedorn, C.H., Goebl, M., Culbertson, M.R. and Carlson, M. (1992) Yeast casein kinase I homologues: an essential gene pair. Proc. Natl. Acad. Sci. USA 89, 2832.
  • 162
    Höfer, M. and Nassar, F.R. (1987) Aerobic and anaerobic uptake of sugars in Schizosaccharomyces pombe. J. Gen. Microbiol. 133, 21632172.
  • 163
    Lichtenberg-Fraté, H., Näschen, T., Heiland, S. and Höfer, M. (1997) Properties and heterologous expression of the glucose transporter GHT1 from Schizosaccharomyces pombe. Yeast 13, 215224.
  • 164
    Hoever, M., Milbradt, B. and Höfer, M. (1992) d-Gluconate is an alternative growth substrate for cultivation of Schizosaccharomyces pombe mutants. Arch. Microbiol. 157, 191–193
  • 165
    Milbradt, B. and Höfer, M. (1994) Glucose-transport-deficient mutants of Schizosaccharomyces pombe: phenotype, genetics and use for genetic complementation. Microbiology 140, 26172623.
  • 166
    Maleszka, R. and Schneider, H. (1982) Fermentation of d-xylose, xylitol and d-xylulose by yeasts. Can. J. Microbiol. 28, 360363.
  • 167
    Hahn-Hägerdal, B., Jeppson, H., Skoog, K. and Prior, B.A. (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Technol. 16, 933943.
  • 168
    Prior, B.A. and Kötter, P. (1997) Pentose utilization by yeasts. In: Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.-D., Eds.), pp. 435–457. Technomic, Lancaster, PA.
  • 169
    Schneider, H. (1989) Conversion of pentoses to ethanol by yeasts and fungi. CRC Crit. Rev. Biochem. Mol. Biol. 9, 140.
  • 170
    Lee, Y.Y., Lin, C.M., Johnson, T. and Chambers, R.P. (1979) Selective hydrolysis of hardwood hemicellulose by acids. Biotechnol. Bioeng. Symp. 8, 7588.
  • 171
    Ligthelm, M.E., Prior, B.A., du Preez, J.C. and Brandt, V. (1988) An investigation of d-[1-13C]xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl. Microbiol. Biotechnol. 28, 293296.
  • 172
    Kilian, S.G. and van Uden, N. (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 27, 545548.
  • 173
    Does, A.L. and Bisson, L.F. (1989) Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl. Environ. Microbiol. 55, 159164.
  • 174
    Kötter, P. and Ciriacy, M. (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776783.
  • 175
    Tantirungkij, M., Izuishi, T., Seki, T. and Yoshida, T. (1994) Fed-batch fermentation of xylose by a fast-growing mutant of xylose-assimilating recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 41, 812.
  • 176
    Hahn-Hägerdal, B., Hallborn, J., Jeppsson, H., Meinander, N., Walfridsson, M., Ojamo, H., Penttilä, M. and Zimmermann, F.K. (1996) Redox balances in recombinant Saccharomyces cerevisiae. In: Annals of the New York Academy of Sciences: Recombinant DNA Technology III (Asenjo, J.A. and Andrews, B.A., Eds.), Vol. 782, pp. 286–296. New York Academy of Sciences, New York.
  • 177
    Meinander, N., Hallborn, J., Keränen, S., Ojamo, H., Penttilä, M., Walfridsson, M. and Hahn-Hägerdal, B. (1994) Utilization of xylose with recombinant Saccharomyces cerevisiae harbouring genes for xylose metabolism from Pichia stipitis. In: Progress in Biotechnology – Proceedings of the 6th European Congress on Biotechnology (Alberghina, L., Frontali, L. and Sensi, P., Eds.), Vol. 9, pp. 1143–1146. Elsevier, Amsterdam.