SEARCH

SEARCH BY CITATION

References

  • 1
    Johnson, D.W. (1994) Nitrogen cycling. Encyclopedia Agric. Sci. 5, 97104.
  • 2
    Dickson, R.E. (1989) Carbon and nitrogen allocation in trees In: Forest Tree Physiology, Annales des Sciences Forestière (Dreyer, E., Aussenac, G., Bonnet-Massimbert, M., Dizengremel, P., Favre, J.M., Garrec, J.P., Le Tacon, F. and Martin, F., Eds.), Vol. 46, pp. 631–647. Elsevier, INRA, Paris.
  • 3
    Harley, J.L. and Smith, S.E. (1983) Mycorrhizal Symbiosis, 483 pp. Academic Press, London.
  • 4
    Smith, S.E. and Read, F.A. (1996) Mycorrhizal Symbiosis, 605 pp. Academic Press, London.
  • 5
    George, E. and Marschner, H. (1996) Nutrient and water uptake by roots of forest trees. Z. Pflanzenernähr. Bodenk. 159, 1121.
  • 6
    Read, D.J. (1987) In support of Frank's organic nitrogen theory. Angew. Botanik 61, 2537.
  • 7
    Turnbull, M.H., Goodall, R. and Stewart, G.R. (1995) The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant Cell Environ. 18, 13861394.
  • 8
    Kaye, J.P. and Hart, S.C. (1997) Competition for nitrogen between plants and soil microorganisms. Tree 12, 139143.
  • 9
    Kielland, K. (1994) Amino acid absorption by artic plants: implications for plant nutrition and nitrogen cycling. Ecology 75, 23732383.
  • 10
    Melin, E. and Nilsson, H. (1952) Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk Botanisk Tidskr. 46, 281285.
  • 11
    Melin, E. and Nilsson, H. (1953) Transport of labelled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegatus (Sw.) Fr. Nature 171, 134.
  • 12
    Miller, S.L. and Allen, E.B. (1992) Mycorrhizae, nutrient translocation, and interactions between plants. In: Mycorrhizal Functioning. An Integrative Plant-Fungal Process (Allen, M.F., Ed), pp. 301–332. Chapman and Hall, New York.
  • 13
    Smith, S.E. and Smith, F.A. (1990) Structure and function of the interface in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114, 138.
  • 14
    Smith, F.A. and Smith, S.E. (1996) Mutualism and parasitism: diversity in function and structure in the ‘Arbuscular’ (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22, 143.
  • 15
    Bonfante-Fasolo, P. and Scannerini, S. (1992) The cellular basis of plant-fungus interchanges in mycorrhizal associations. In Mycorrhizal Functioning: An Integrative Plant-Fungal Process (Allen, M.F., Ed.), pp 37–64. Chapman and Hall, London.
  • 16
    Kottke, I. and Oberwinkler, F. (1987) The cellular structure of the Hartig net: coenocytic and transfer cell-like-organization. Nord. J. Bot. 7, 8595.
  • 17
    Cairney, J.W.G, Rees, B.J., Allaway, W.G. and Ashford, A.E. (1994) A basidiomycete isolated from a Pisonia mycorrhiza forms sheathing mycorrhizas with transfer cells on Pisonia grandis R. Br. New Phytol. 126, 9198.
  • 18
    Hadas, A., Sofer, M., Molina, J.A.E., Barak, P. and Clapp, C.E. (1992) Assimilation of nitrogen by soil population: NH+4 versus organic N. Soil Biol. Biochem. 24, 137143.
  • 19
    Martin, F. and Botton, B. (1993) Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Adv. Plant Physiol. 9, 83102.
  • 20
    Botton, B. and Chalot, M. (1995) Nitrogen assimilation: enzymology in ectomycorrhizae. In: Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology (Hock, B. and Varma, A., Eds.), pp. 325–363. Springer-Verlag, Berlin.
  • 21
    Harley, J.L (1964) Incorporation of carbon dioxide into excised beech mycorrhizas in the presence and absence of ammonia. New Phytol. 63, 203–208.
  • 22
    Carrodus, B.B. (1967) Absorption of nitrogen by mycorrhizal roots of beech. II. Ammonium and nitrate as sources of nitrogen. New Phytol. 66, 14.
  • 23
    Martin, F., Stewart, G.R., Genetet, I. and Le Tacon, F. (1986) Assimilation of  15NH+4 by beech (Fagus sylvatica L.) ectomycorrhizas. New Phytol. 102, 8594.
  • 24
    Finlay, R.D., Ek, H., Odham, G. and Söderström, B. (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol. 110, 5966.
  • 25
    Finlay, R.D., Ek, H., Odham, G. and Söderström, B. (1989) Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol. 113, 4755.
  • 26
    Chalot, M., Stewart, G.R., Brun, A., Martin, F. and Botton, B. (1991) Ammonium assimilation by spruce-Hebeloma sp. ectomycorrhizas. New Phytol. 119, 541550.
  • 27
    Krupa, S. and Branström, G. (1974) Studies on the nitrogen metabolism in ectomycorrhizae. II. Free and bound amino acids in the mycorrhizal fungus Boletus variegatus, in the root systems of Pinus sylvestris and during their association. Physiol. Plant. 31, 279283.
  • 28
    Attiwill, P.M. and Adams, M.A. (1993) Nutrient cycling in forests. New Phytol. 124, 561582.
  • 29
    Nilsson, L.O., Hüttl, R.F., Johansson, U.T. and Jochheim, H. (1995) Nutrient uptake and cycling in forest ecosystems – present status and future research directions. Plant Soil 168–169, 5–13.
  • 30
    Stams, A.J.M., Lutke Schipholt, I.J., Marnette, E.C.L., Beemsterboer, B. and Woittiez, J.R.W. (1990) Conversion of 15N-ammonium in forest soils. Plant Soil 125, 129134.
  • 31
    Aguilera, L.M., Griffiths, R.P. and Caldwell, B.A. (1993) Nitrogen in ectomycorrhizal mat and non-mat soils of different-age Douglas-fir forests. Soil Biol. Biochem. 25, 10151019.
  • 32
    Hart, S.C., Firestone, M.K., Paul, E.A. and Smith, J.L. (1993) Flow and fate of soil nitrogen in an annual grassland and a young mixed-conifer forest. Soil Biol. Biochem. 25, 431442.
  • 33
    Griffiths, R.P., Baham, J.E. and Caldwell, B.A. (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol. Biochem. 26, 331337.
  • 34
    Read, D.J. and Bajwa, R. (1985) Some nutritional aspects of the biology of ericaceous mycorrhizas. Proc. R. Soc. Edinburgh 85, 317332.
  • 35
    Abuarghub, S.M. and Read, D.J. (1988) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol. 108, 433441.
  • 36
    Nye, P.H. (1977) The rate-limiting step in plant nutrient absorption from soil. Soil Sci. 123, 292297.
  • 37
    Clinton, P.W., Newman, R.H. and Allens, R.B. (1995) Immobilization of 15N in forest litter studied by 15N CPMAS NMR spectroscopy. Eur. J. Soil Sci. 46, 551556.
  • 38
    Fogel, R. (1980) Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol. 86, 199212.
  • 39
    Alexander, I.J. (1983) The significance of ectomycorrhizas in the nitrogen cycle. In: Nitrogen as an Ecological Factor (Lee, J.A., McNeil, S. and Rorison, I.H., Eds.), pp. 69–93. Blackwell Scientific, Oxford.
  • 40
    Griffiths, R.P., Castellano, M.A. and Caldwell, B.A. (1991) Hyphal mats formed by two ectomycorrhizal fungi and their association with Douglas-fir seedlings: a case study. Plant Soil 134, 255259.
  • 41
    Leake, J. R. (1996) Nutrient mobilization from organic matter by ericoid and ectomycorrhizal fungi: some recent advances. In: Mycorrhizas in Integrated Systems, From Genes to Plant Development (Azcon-Aguilar, C. and Barea, J.M., Eds.), pp 502–507. Proceedings of the Fourth European Symposium on Mycorrhizas. European Commission, Brussels.
  • 42
    Bajwa, R., Abuarghub, S. and Read, D.J. (1985) The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol. 101, 469486.
  • 43
    Leake, J.R. and Read, D.J. (1989) The biology of mycorrhiza in the Ericaceae. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae. New Phytol. 112, 6976.
  • 44
    Leake, J.R. and Read, D.J. (1990) Proteinase activity in mycorrhizal fungi I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol. 115, 243250.
  • 45
    Leake, J.R. and Read, D.J. (1990) Proteinase activity in mycorrhizal fungi II. the effects of mineral and organic nitrogen sources on induction of extracellular proteinase in Hymenoscyphus ericae Read Korf and Kernan. New Phytol. 116, 123128.
  • 46
    Leake, J.R. and Read, D.J. (1991) Proteinase activity in mycorrhizal fungi. III. Effects of protein, protein hydrolysate, glucose and ammonium on production of extracellular proteinase by Hymenoscyphus ericae Read Korf and Kernan. New Phytol. 117, 309318.
  • 47
    Abuzinadah, R.A. and Read, D.J. (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol. 103, 481493.
  • 48
    Abuzinadah, R.A., Finlay, R.D. and Read, D.J. (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol. 103, 495506.
  • 49
    Abuzinadah, R.A. and Read, D.J. (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula pendula and Pinus mycorrhizal association with Hebeloma cylindrosporum. New Phytol. 103, 506514.
  • 50
    Mitchell, D.T., Sweeney, M. and Kennedy, A. (1992) Chitin degradation by Hymenoscyphus ericae and the influence of H. ericae on the growth of ectomycorrhizal fungi. In: Mycorrhizas in Ecosystems (Read, D.J., Lewis, D.H., Fitter, A.H. and Alexander, I.J., Eds.), pp. 246–251. CAB, Wallingford.
  • 51
    Kerley, S.J. and Read, D.J. (1995) The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol. 131, 369375.
  • 52
    Hodge, A., Alexander, I.J., Gooday, G.W. and Killham, K. (1996) Carbon allocation patterns in fungi in the presence of chitin in the external medium. Mycol. Res. 100, 14281430.
  • 53
    Fokin, A.D., Knyazev, D.A. and Kuzyakov, Y.V. (1993) Destruction of 14C- and 15N-labeled amino acids and nucleic bases in soil and the supply of their transformation products to plants. Eur. Soil Sci. 25, 109122.
  • 54
    Griffiths, R.P. and Caldwell, B.A. (1992) Mycorrhizal mat communities in forest soils. In: Mycorrhizas in Ecosystems (Read, D.J., Lewis, D.H., Fitter, A.H. and Alexander, I.J., Eds.), pp 98–105. CAB, Wallingford.
  • 55
    Myers, M.D. and Leake, J.R. (1996) Phosphodiesters as mycorrhizal P sources. II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon. New Phytol. 132, 445451.
  • 56
    Jorgensen, N.O.G., Kroer, N., Coffin, R.B., Yang, X.H. and C. Lee (1993) Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria. Mar. Ecol. Prog. Ser. 98, 135–148.
  • 57
    Payne, J.W. (1980) Microorganisms and Nitrogen Sources, 411 pp. Wiley, New York.
  • 58
    Ramstedt, M. and Söderhäll, K. (1983) Protease, phenoloxidase and pectinase activities in mycorrhizal fungi. Trans. Br. Mycol. Soc. 81, 157161.
  • 59
    El-Badaoui, K. and Botton, B. (1989) Production and characterization of exocellular proteases in ectomycorrhizal fungi. Ann. Sci. Forest. 46, 728730.
  • 60
    Zhu, H., Guo, D.C. and Dancik, B. (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl. Environ. Microbiol. 56, 837843.
  • 61
    Zhu, H., Dancik, B. and Higginbotham, K.O. (1994) Regulation of an extracellular proteinase in an ectomycorrhizal fungus Hebeloma cylindrosporum. Mycologia 86, 227234.
  • 62
    Lundeberg, G. (1970) Utilisation of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Studia Forest. Suec. 79, 95.
  • 63
    Colpaert, J.V. and Van Laere, A. (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprophytic basidiomycete colonizing beech leaf litter. New Phytol. 133, 133141.
  • 64
    Dighton, J. (1991) Acquisition of nutrients from organic sources by mycorrhizal autotrophic plants. Experientia 47, 362369.
  • 65
    Bending, G.D. and Read, D.J. (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol. 130, 401409.
  • 66
    Bending, G.D. and Read, D.J. (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol. 130, 411417.
  • 67
    Wardle, D. A. (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 67, 321358.
  • 68
    Chalot, M., Kytoviita, M.M., Brun, A., Finlay, R.D. and Söderström, B. (1995) Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxillus involutus. Mycol. Res. 99, 11311138.
  • 69
    Bowen, G. D. and Smith, S. E. (1981) The effects of mycorrhizas on nitrogen uptake by plants. In: Terrestrial Nitrogen Cycles (Clark, F.E. and Rosswall, T., Eds.), pp. 237–247. Ecological Bulletin, Stockholm.
  • 70
    Burgstaller, W. (1997) Transport of small ions and molecules through the plasma membrane of filamentous fungi. Crit. Rev. Microbiol. 23, 146.
  • 71
    Jennings, D.H. (1976) Transport and translocation in filamentous fungi. In: The Filamentous Fungi (Smith, J.E. and Berry, D.R., Eds.), Vol. 2, pp. 32–64. Edward Arnold, London.
  • 72
    Krämer, R (1994) Secretion of amino acids by bacteria: physiology and mechanisms. FEMS Microbiol. Rev. 13, 75–94.
  • 73
    Marschner, H. and Dell, B. (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89102.
  • 74
    Rousseau, J.V.D., Sylvia, D.M. and Fox, A.J. (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128, 639644.
  • 75
    Horak, J. (1986) Amino acid transport in eukaryotic microorganisms. Biochim. Biophys. Acta 864, 223256.
  • 76
    Horak, J. (1997) Yeast nutrient transporters. Biochim. Biophys. Acta 1331, 4179.
  • 77
    Roos, W. (1989) Kinetic properties, nutrient-dependent regulation and energy coupling of amino acid transport systems in Penicillium cyclopium. Biochim. Biophys. Acta 978, 119133.
  • 78
    Sanders, D. (1990) Kinetic modelling of plant and fungal membrane transport systems. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 77107.
  • 79
    Bush, D.R. (1993) Proton-coupled sugar and amino acid transporters in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 44, 513542.
  • 80
    Frommer, W.B., Kwart, M., Hirner, B., Fischer, W.N., Hummel, S. and Ninnemann, O. (1994) Transporters for nitrogenous compounds in plants. Plant Mol. Biol. 26, 16511670.
  • 81
    Sophianopoulou, V. and Diallinas, G. (1995) Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol. Rev. 16, 5375.
  • 82
    Tanner, W. and Caspari, T. (1996) Membrane transport carriers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 595626.
  • 83
    Logan, H., Basset, M., Very, A.A. and Sentenac, H. (1997) Plasma membrane transport systems in higher plants: from black boxes to molecular physiology. Physiol. Plant. 100, 115.
  • 84
    Garrill, A. (1995) Transport. In: The Growing Fungus (Gow, N.A.R. and Gadd, G.M., Eds.), pp. 163–182. Chapman and Hall, London.
  • 85
    Chalot, M., Brun, A., Botton, B. and Söderström, B. (1996) Kinetics, energetics and specificity of the general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiology 142, 17491756.
  • 86
    Becker, J.M. and Naider, F.R. (1980) Transport and utilization of peptides by yeast. Microorganisms and nitrogen sources. In: Microorganisms and Nitrogen Sources (Payne, J.W., Ed.), pp. 257–279. John Wiley and Sons, Washington, DC.
  • 87
    Becker, J.M. and Naider, F.R. (1995) Fungal peptide transport as drug delivery system. In: Peptide-Based Drug Design. Controlling Transport and Metabolism (Taylor, M.D. and Amidon, G.L., Eds.), pp. 369–384. American Chemical Society, Washington, DC.
  • 88
    Alagramam, K., Naider, F.R. and Becker, J.M. (1995) A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 15, 225234.
  • 89
    Abuzinadah, R.A. and Read, D.J. (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L) infected with different mycorrhizal fungi. New Phytol. 112, 5560.
  • 90
    Abuzinadah, R.A. and Read, D.J. (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula L.) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol. 112, 6168.
  • 91
    Bajwa, R. and Read, D.J. (1985) The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol. 101, 459467.
  • 92
    Ling, J.R., Cooper, P.B., Parker, S.J. and Armstead, I.P. (1992) Production and purification of mixed 14C-labelled peptides derived from plant biomass. J. Lab. Comp. Radiopharmacol. 31, 417426.
  • 93
    Cole, D. W. (1981) Nitrogen uptake and translocation by forest ecosystems. In: Terrestrial Nitrogen Cycles (Clark, F.E. and Rosswall, T., Eds.), pp. 219–232. Ecological Bulletin, Stockholm.
  • 94
    Schobert, C. and Komor, E. (1987) Amino acid uptake by Ricinus communis roots: characterization and physiological significance. Plant Cell Environ. 10, 493500.
  • 95
    Kalisz, H.M., Wood, D.A. and Moore, D. (1987) Production, regulation and release of extracellular proteinase activity in basidiomycete fungi. Trans. Br. Mycol. Soc. 88, 221227.
  • 96
    Bledsoe, C., Brown, D., Coleman, M., Littke, W., Rygiewicz, P., Sangwanit, U., Rogers, S. and Ammirati, J. (1989) Physiology and metabolism of ectomycorrhizae. In: Forest Tree Physiology, Annales des Sciences Forestière (Dreyer, E., Aussenac, G., Bonnet-Massimbert, M., Dizengremel, P., Favre, J.M., Garrec, J.P., Le Tacon, F. and Martin, F., Eds.), Vol. 46, pp. 697–705. Elsevier, INRA, Paris.
  • 97
    Sangwanit, U. (1986) Amino Acid Uptake by Mycorrhizal and Non Mycorrhizal Douglas-fir and Western Hemlock Seedlings. PhD Dissertation, University of Washington, Seattle, WA.
  • 98
    Plassard, C., Barry, D., Eltrop, L. and Mousain, D. (1994) Nitrate uptake in maritime pine (Pinus pinaster) and the ectomycorrhizal fungus Hebeloma cylindrosporum: effect of ectomycorrhizal symbiosis. Can. J. Bot. 72, 189197.
  • 99
    France, R.C. and Reid, C.P.P. (1983) Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Can. J. Bot. 61, 964984.
  • 100
    Andersson, S., Ek, H. and Söderström, B. (1997) Effect of liming on the uptake of organic and inorganic nitrogen by mycorrhizal (Paxillus involutus) and non-mycorrhizal Pinus sylvestris plants. New Phytol. 135, 763771.
  • 101
    Plassard, C., Reid, R.J. and Tester, M. (1996) Amino acid release by the ectomycorrhizal fungus Hebeloma cylindrosporum grown in vitro. In: Mycorrhizas in Integrated Systems, From Genes to Plant Development (Azcon-Aguilar, C. and Barea, J.M., Eds.), pp. 364–367. Proceedings of the Fourth European Symposium on Mycorrhizas. European Commission, Brussels.
  • 102
    Virtanen, A.I. and Linkola, H. (1946) Organic nitrogen compounds as nitrogen nutrition for higher plants. Nature 4015, 515.
  • 103
    Schobert, C., Köckenberger, W. and Komor, E. (1988) Uptake of amino acids by plants from the soil: a comparative study with castor bean seedlings grown under natural and axenic soil conditions. Plant Soil 109, 181188.
  • 104
    Weston, K., Hall, J.L. and Williams, E. (1995) Characterization of amino acid transport in Ricinus communis roots using isolated membrane vesicles. Planta 196, 166173.
  • 105
    Arnebrant, K., Ek, H., Finlay, R.D. and Söderström, B. (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124, 231242.
  • 106
    Finlay, R.D., Brun, A., Chalot, M. and Söderström, B. (1996) Interactions between carbon and nitrogen metabolism of ectomycorrhizal associations. In: Mycorrhizas in Integrated Systems, From Genes to Plant Development (Azcon-Aguilar, C. and Barea, J.M. Eds.), p.p 279–284. Proceedings of the fourth European Symposium on Mycorrhizas. European Commission, Brussels.
  • 107
    Harrison, M.J. (1996) A phosphate transporter from the mycorrhizal fungus Glomus versicolor. Nature 378, 626629.
  • 108
    Simard, S.M.W. (1995) Interspecific Carbon Transfer in Ectomycorrhizal Tree Species Mixtures. Ph.D. Dissertation, Oregon State University, Corvallis, OR.
  • 109
    Rovira, A.D. and McDougall, B.M. (1967) Microbiological and biochemical aspects of the rhizosphere. In: Soil Biochemistry (McLaren, A.D. and Peterson, G.H., Eds.), pp. 417–463. M. Dekker Inc., New York.
  • 110
    Bowen, G.D. (1969) Nutrient status effects on loss of amides and amino acids from pine roots. Plant Soil 30, 139142.
  • 111
    Parsons, J.W. and Tinsley, J. (1975) Nitrogenous substances. In: Soil Components, Organic Components, Vol. 1. Springer-Verlag, Berlin.
  • 112
    Rozycki, H. and Strzelczyk, E. (1985) Free amino acid production by ectomycorrhizal fungi of pine (Pinus sylvestris L.). Acta Mikrobiol. Polon. 34, 5966.
  • 113
    Rozycki, H. and Strzelczyk, E. (1986) Free amino acid production by actinomycetes, isolated from soil, rhizosphere, and mycorrhizosphere of pine (Pinus sylvestris L.). Zentralbl. Mikrobiol. 141, 423429.
  • 114
    Kershaw, J.L. and Stewart, G.R. (1992) Metabolism of 15N-labelled ammonium by the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. Mycorrhiza 1, 7177.
  • 115
    Chalot, M., Brun, A., Finlay, R.D. and Söderström B. (1994) Metabolism of [14C]glutamate and [14C]glutamine by the ectomycorrhizal fungus Paxillus involutus. Microbiology 140, 16411649.
  • 116
    Rudawska, M., Kieliszewska-Rokicka, B., Debaud, J.C., Lewandowski, A and Gay, G. (1994) Enzymes of ammonium metabolism in ectendomycorrhizal and ectomycorrhizal symbionts of pine. Physiol. Plant. 92, 279285.
  • 117
    Turnbull, M.H., Goodall, R. and Stewart, G.R. (1996) Evaluating the contribution of glutamate dehydrogenase to ammonia assimilation by ectomycorrhizal fungi. Aust. J. Plant Physiol. 23, 151159.
  • 118
    Martin, F., Coté, R. and Canet, D. (1994) NH+4 assimilation in the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton, a 15N-NMR study. New Phytol. 128, 479485.
  • 119
    Abuzinadah, R.A. and Read, D.J. (1988) Amino acids as nitrogen sources for ectomycorrhizal fungi. Trans. Br. Mycol. Soc. 91, 473479.
  • 120
    Ahmad, I., Carleton, T.J., Malloch, D.W. and Hellebust, J.A. (1990) Nitrogen metabolism in the ectomycorrhizal fungus Laccaria bicolor (R. Mre.) Orton. New Phytol. 116, 431441.
  • 121
    Finlay, R.D., Frostegård, Å. and Sonnerfeldt, A.M. (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol. 120, 105115.
  • 122
    Keller, G. (1996) Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol. Res. 100, 989998.
  • 123
    Bajwa, R. and Read, D.J. (1986) Utilization of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and non-mycorrhizal seedlings of Vaccinium. Trans. Br. Mycol. Soc. 87, 269277.
  • 124
    Sharples, J.M. and Cairney, J.W.G. (1997) Organic nitrogen utilization by an unidentified mycobiont isolated from mycorrhizas of Pisonia grandis. Mycol. Res. 101, 315318.
  • 125
    Chalot, M., Brun, A., Finlay, R.D. and Söderström, B. (1994) Respiration of [14C]alanine by the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiol. Let. 121, 8792.
  • 126
    Chalot, M., Finlay, R.D., Ek, H. and Söderström, B. (1995) Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus. Exp Mycol. 19, 297304.
  • 127
    Dell, B., Botton, B., Martin, F. and Le Tacon, F. (1989) Glutamate dehydrogenase in ectomycorrhizas of spruce (Picea excelsa L.) and beech (Fagus sylvatica L.). New Phytol. 111, 683692.
  • 128
    Chalot, M., Brun, A., Khalid, A., Dell, B., Rohr, R. and Botton, B. (1990) Occurrence and distribution of aspartate aminotransferases in spruce and beech ectomycorrhizas. Can. J. Bot. 68, 17561762.
  • 129
    Botton, B. and Dell, B. (1994) Expression of glutamate dehydrogenase and aspartate aminotransferase in eucalypt ectomycorrhizas. New Phytol. 126, 249257.
  • 130
    Calderon, J. and Mora, J. (1985) Glutamine cycling in Neurospora crassa. J. Gen. Microbiol. 131, 32373242.
  • 131
    Abuzinadah, R.A. and Read, D.J. (1989) Carbon transfer associated with assimilation of inorganic nitrogen sources by silver birch (Betula pendula Roth.). Trees 3, 1723.
  • 132
    Martin, F. and Canet, D. (1986) Biosynthesis of amino acids during [13C]glucose utilization by the ectomycorrhizal ascomycete Cenococcum geophilum monitored by 13C nuclear magnetic resonance. Physiol. Vég. 24, 209218.
  • 133
    Söderström, B. and Read, D.J. (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol. Biochem. 19, 231236.
  • 134
    Rygiewicz, P.T. and Andersen, C.P. (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369, 5860.
  • 135
    Simard, S.W., Perry, D.A., Jones, M.D., Myrold, D.D, Durall, D.M. and Molina, R. (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579582.
  • 136
    Hampp, R. and Schaeffer, C. (1995) Mycorrhiza-carbohydrate and energy metabolism. In: Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology (Hock, B. and Varma, A., Eds.), pp. 267–296. Springer-Verlag, Berlin.
  • 137
    Martin, F., Ramstedt, M. and Söderhall, K. (1987) Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie 69, 569581.
  • 138
    Berredjem, A., Garnier, A., Prima Putra, D. and Botton, B. (1997) Effect of nitrogen and carbon sources on growth and activities of NAD- and NADP-dependent isocitrate dehydrogenases of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton. Mycol. Res. (in press).
  • 139
    Martin, F. and Tagu, D. (1995) Ectomycorrhiza development: a molecular perspective. In: Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology (Hock, B. and Varma, A., Eds.), pp. 29–58. Springer-Verlag, Berlin.
  • 140
    Brun, A., Chalot, M., Finlay, R.D. and Söderström, B. (1995) Structure and function of the ectomycorrhizal association between Paxillus involutus (Batsch) Fr. and Betula pendula (Roth.). I. Dynamics of mycorrhiza formation. New Phytol. 129, 487493.
  • 141
    Blaudez, D., Chalot, M., Botton, B. and Dizengremel, P. (1997) Structure and function of the ectomycorrhizal association between Paxillus involutus (Batsch) Fr. and Betula pendula (Roth.). II. Metabolic changes during mycorrhiza formation. New Phytol. 138, (in press).
  • 142
    Brun, A., Chalot, M., Duponnois, R., Botton, B. and Dexheimer, J. (1994) Immunogold localization of glutamine synthetase and NADP-glutamate dehydrogenase of Laccaria laccata in Douglas fir ectomycorrhizas. Mycorrhizas 5, 139144.
  • 143
    Brun, A., Chalot, M., Martin, F. and Botton, B. (1992) Purification and characterization of glutamine synthetase and NADP-glutamate dehydrogenase from the ectomycorrhizal fungus Laccaria laccata. Plant Physiol. 99, 938944.
  • 144
    Brun, A., Chalot, M. and Botton, B. (1993) Glutamate dehydrogenase and glutamine synthetase of the ectomycorrhizal fungus Laccaria laccata: occurrence and immunogold localization in the free-living mycelium. Plant Physiol. (Life Sci. Adv.) 12, 5360.
  • 145
    Storm-Mathisen, J., Leknes, A.K., Bore, A.T, Vaaland, J.L., Edminson, P., Haug, F.M.S. and Ottersen, O.P. (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301, 517520.
  • 146
    Kottke, I., Qian, X.M., Pritsch, K., Haug, I. and Oberwinkler, F. (1997) Xerocomus badius-Picea abies an understanding mycorrhiza in acidic soil. (in press).
  • 147
    D'Enfert, C., Minet, M. and Lacroute, F. (1995) Cloning plant genes by complementation of yeast mutants. Methods Cell Biol. 49, 417430.
  • 148
    Borstlap, A.C., Meenks, J.L.D., Van Eck, W.F. and Bicker, J.T.E. (1986) Kinetics and specificity of amino acid uptake by the duckweed Spirodela polyrhiza (L.) Schleiden. J. Exp. Bot. 37, 10201035.
  • 149
    Lien, R. and Rognes, S.E. (1977) Uptake of amino acids by barley leaf slices: kinetics, specificity, and energetics. Physiol. Plant. 41, 175183.