• 1
    Moodie, A.D. and Ingledew, W.J. (1990) Microbial anaerobic respiration. In: Advances in Microbiology and Physiology (Rose, A.H. and Tempest, D.W., Eds.), pp. 225–269. Academic Press, London.
  • 2
    Fauque, G., LeGall, J. and Barton, L.L. (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Variations in Autotrophic Life (Shively, J.M. and Barton, L.L., Eds.), pp. 271–337. Academic Press, London.
  • 3
    Schauder, R. and Kröger, A. (1993) Bacterial sulphur respiration. Arch. Microbiol. 159, 491497.
  • 4
    Fauque, G.D. (1994) Sulfur reductase from thiophilic sulfate-reducing bacteria. Methods Enzymol. 243, 353367.
  • 5
    Fauque, G.D., Klimmek, O. and Kröger, A. (1994) Sulfur reductases from spirilloid mesophilic sulfur-reducing bacteria. Methods Enzymol. 243, 367383.
  • 6
    Wolfe, R.S. (1991) My kind of biology. Annu. Rev. Microbiol. 45, 135.
  • 7
    Wolfe, R.S. (1993) A historical overview of methanogenesis. In: Methanogenesis (Ferry, J.G., Ed.), pp. 1–32. Chapman and Hall, New York, NY.
  • 8
    Deppenmeier, U., Müller, V. and Gottschalk, G. (1996) Pathways of energy conservation in methanogenic archaea. Arch. Microbiol. 165, 149163.
  • 9
    Ferry, J.G. (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. BioFactors 6, 2535.
  • 10
    Reeve, J.N., Nölling, J., Morgan, R.M. and Smith, D.R. (1997) Methanogenesis: genes, genomes, and who's on first. J. Bacteriol. 179, 59755986.
  • 11
    Thauer, R.K. (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144, 23772406.
  • 12
    Segerer, A., Neuner, A., Kristjansson, J. and Stetter, K.O. (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol. 36, 559564.
  • 13
    Segerer, A.H., Trincone, A., Gahrtz, M. and Stetter, K.O. (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol. 41, 495501.
  • 14
    Huber, R., Kristjansson, J.-K. and Stetter, K.O. (1987) Pyrobaculum gen. nov., a new genus of neutrophilic rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch. Microbiol. 149, 95101.
  • 15
    Zillig, W., Gierl, A., Wunder, S., Janekovic, D., Stetter, K.O. and Klenk, H.P. (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst. Appl. Microbiol. 4, 7987.
  • 16
    Stetter, K.O., Segerer, A., Zillig, W., Huber, G., Fiala, G., Huber, R. and König, H. (1986) Extremely thermophilic sulfur metabolizing archaebacteria. Syst. Appl. Microbiol. 7, 393397.
  • 17
    Fischer, F., Zillig, W., Stetter, K.O. and Schreiber, G. (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301, 511513.
  • 18
    Selig, M. and Schönheit, P. (1994) Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic extremely hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicun proceeds via the citric acid cycle. Arch. Microbiol. 162, 286294.
  • 19
    Bonch-Osmolovskaya, E.A., Slesarev, A.I., Miroshnichenko, M.L., Svetlichnaya, T.P. and Alekseev, V.A. (1988) Characteristics of Desulfurococcus amylolyticus n. sp. – a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island. Mikrobiologiya 57, 94101.
  • 20
    Zillig, W., Stetter, K.O., Prangishvilli, D., Schäfer, W., Wunderl, S., Janekovic, D., Holz, I. and Palm, P. (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zbl. Bakt. Hyg. I. Abt. Orig. C3, 304–317.
  • 21
    Stetter, K.O., König, H. and Stackebrandt, E. (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur-reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol. 4, 535551.
  • 22
    Dirmeier, R., Keller, M., Frey, G., Huber, H. and Stetter, K.O. (1998) Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from hyperthermophilic Pyrodictium abyssi. Eur. J. Biochem. 252, 486491.
  • 23
    Jochimsen, B., Peinemann-Simon, S., Völker, H., Stüben, D., Botz, R., Stoffers, P., Dando, P.R. and Thomm, M. (1997) Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur dependent crenarchaeote isolated from Milos, Greece. Extremophiles 1, 6773.
  • 24
    Stetter, K.O. (1986) Diversity of extremely thermophilic archaebacteria. In: Thermophiles: General, Molecular and Applied Microbiology (Brock, T.D., Ed.), pp. 39–74, John Wiley, New York, NY.
  • 25
    Huber, R., Dyba, D., Huber, H., Burggraf, S. and Rachel, R. (1998) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int. J. Syst. Bacteriol. 48, 3138.
  • 26
    Fiala, G., Stetter, K.O., Jannasch, H., Langworthy, T. and Madon, J. (1986) Staphylothermus marinus sp. nov. Represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst. Appl. Microbiol. 8, 106113.
  • 27
    Zillig, W., Holz, I., Janekovic, D., Klenk, H.-P., Imsel, E., Trent, J., Wunderl, S., Forjaz, V.H., Coutinho, R. and Ferreira, T. (1990) Hyperthermus buthylicus, a novel hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172, 39593965.
  • 28
    Fiala, G. and Stetter, K.O. (1986) Pyrococcus furiosus sp. nov., represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145, 5661.
  • 29
    González, J.M., Masuchi, Y., Robb, F.T., Ammerman, J.W., Maeder, D.L., Yanagibayashi, M., Tamaoka, J. and Kato, C. (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2, 123130.
  • 30
    Dirmeier, R., Keller, M., Hafenbradl, D., Braun, F.-J., Rachel, R., Burggraf, S. and Stetter, K.O. (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2, 109114.
  • 31
    Neuner, A., Jannasch, H., Belkin, S. and Stetter, K.O. (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153, 205207.
  • 32
    Svetlichnyi, V.A., Slesarev, A.I., Svetlichnaya, T.P. and Zavarzin, G.A. (1987) Caldococcus litoralis, gen. nov. sp. nov. – a new marine, extremely thermophilic, sulfur-reducing archaebacterium. Mikrobiologiya 56, 831838.
  • 33
    Segerer, A., Langworthy, T. and Stetter, K.O. (1988) Thermoplasma acidophilum and Thermoplasma volcanicum sp. nov. from solfatara fields. System. Appl. Microbiol. 10, 161171.
  • 34
    Stetter, K.O. and Gaag, G. (1983) Reduction of molecular sulphur by methanogenic archaea. Nature 305, 309311.
  • 35
    Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., König, H., Rachel, R., Rockinger, I., Fricke, H. and Stetter, K.O. (1992) Aquifex pyrophilus gen. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340351.
  • 36
    Huber, R., Rossnagel, P., Woese, C.R., Rachel, R., Langworthy, T. and Stetter, K.O. (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst. Appl. Microbiol. 19, 4049.
  • 37
    L'Haridon, S., Cilia, V., Messner, P., Raguéntès, G., Gambacorta, A., Sleytr, U.B., Prieur, D. and Jeanthon, C. (1998) Desulfurobacterium thermolithotrophicum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 707771.
  • 38
    Pfennig, N. and Biebl, H. (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate oxidizing bacterium. Arch. Microbiol. 110, 312.
  • 39
    Liesack, W. and Finster, K. (1994) Phylogenetic analysis of five strains of Gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44, 753758.
  • 40
    Bonch-Osmolovskaya, E.A., Sokolova, T.G., Kostrikina, N.A. and Zavarzin, G.A. (1990) Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch. Microbiol. 153, 151155.
  • 41
    Schmitz, R.A., Bonch-Osmolovskaya, E.A. and Thauer, R.K. (1990) Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch. Microbiol. 154, 274279.
  • 42
    Biebl, H. and Pfennig, N. (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112, 115117.
  • 43
    Huber, R., Woese, C.R., Langworthy, T., Kristjansson, J. and Stetter, K.O. (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘Thermotogales’. Arch. Microbiol. 154, 105111.
  • 44
    Patel, B.K., Morgan, H.W. and Daniel, R.M. (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141, 6369.
  • 45
    Caccavo, F. Jr., Debra, J., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F. and McInerney, M.J. (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 37523759.
  • 46
    Lovley, D.R., Phillips, E.J.P., Lonergan, D.J. and Widman, P.K. (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61, 21322138.
  • 47
    Moser, D.P. and Nealson, K.H. (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62, 21002105.
  • 48
    Wolfe, R.S. and Pfennig, N. (1977) Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33, 427433.
  • 49
    Finster, K., Liesack, W. and Tindall, B.J. (1997) Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int. J. Syst. Bacteriol. 47, 12121217.
  • 50
    Windberger, E., Huber, R., Trincone, A., Fricke, H. and Stetter, K.O. (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 151, 506512.
  • 51
    Huber, R., Langworthy, T., König, H., Thomm, M., Woese, C.R., Sleytr, U.B. and Stetter, K.O. (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324333.
  • 52
    Huber, R., Woese, C.R., Langworthy, T., Fricke, H. and Stetter, K.O. (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘Thermotogales’. Syst. Appl. Microbiol. 12, 3237.
  • 53
    Antoine, E., Cilia, V., Meunier, J.R., Guezennec, J., Lesogeur, F. and Barbier, G. (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the Southwestern Pacific Ocean. Int. J. Syst. Bacteriol. 47, 11181123.
  • 54
    Macy, J.M., Schröder, I., Thauer, R.K. and Kröger, A. (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch. Microbiol. 144, 147150.
  • 55
    Stetter, K.O. (1998) Volcanoes, hydrothermal venting, and the origin of life. In: Volcanoes and the Environment (Marti, J. and Ernst, G.J., Eds.). Cambridge University Press, in press.
  • 56
    Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H. and Vance, I. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743745.
  • 57
    Stetter, K.O. (1996) Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149158.
  • 58
    Stetter, K.O. (1997) Primitive archaea and bacteria in the cycles of sulfur and nitrogen near the temperature limit of life. In: Progress in Microbial Ecology. Proceedings of Seventh International Symposium on Microbial Ecology, Santos, Sao Paulo, Brazil, 1995 (Martins, M.T. et al., Eds.), pp. 55–61. SBM/ICOME, Sao Paulo.
  • 59
    Widdel, F. and Pfennig, N. (1991) The genus Desulfuromonas and other Gram-negative sulfur-reducing eubacteria. In: The Prokaryotes (Balows, A., Trüper, H.G., Dwarkin, M., Harder, W. and Schleifer, K.-H., Eds.), pp. 3379–3389.
  • 60
    Zöphel, A., Kennedy, M.C., Beinert, Z.H. and Kroneck, P.M.H. (1988) Investigations on microbial sulfur respiration. 1. Activation and reduction of elemental sulfur in several strains of eubacteria. Arch. Microbiol. 150, 7277.
  • 61
    Paulsen, J., Kröger, A. and Thauer, R.K. (1986) ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch. Microbiol. 144, 7883.
  • 62
    Boulégue, J. (1978) Solubility of elemental sulfur in water at 298 K. Phosphorus Sulfur 5, 127128.
  • 63
    Giggenbach, W. (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°. Inorg. Chem. 11, 12011207.
  • 64
    Klimmek, O., Kröger, A., Steudel, R. and Holdt, G. (1991) Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport. Arch. Microbiol. 155, 177182.
  • 65
    Ellis, A.J. and Giggenbach, W. (1971) Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution. Geochim. Cosmochim. Acta 35, 247260.
  • 66
    Schwarzenbach, G. and Fischer, A. (1960) Die Acidität der Sulfane und die Zusammensetzung wässeriger Polysulfidlösungen. Helv. Chim. Acta 43, 13651388.
  • 67
    Thauer, R.K., Jungermann, K. and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100180.
  • 68
    Jocelyn, P.C. (1967) The standard redox potential of cysteine-cystine from the thiol-disulphide exchange reaction with glutathione and lipoic acid. Eur. J. Biochem. 2, 327331.
  • 69
    Schnorf, U. (1966) Dissertation Nr 3871, ETH Zürich.
  • 70
    Schauder, R. and Müller E. (1993) Polysulphide as a possible substrate for sulphur-reducing bacteria. Arch. Microbiol. 160, 377382.
  • 71
    Klimmek, O., Kreis, V., Klein, C., Simon, J., Wittershagen, A. and Kröger, A. (1998) The function of the periplasmic Sud protein in polysulfide respiration of Wolinella succinogenes. Eur. J. Biochem. 253, 263269.
  • 72
    Krafft, T., Groß, R. and Kröger, A. (1995) The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur. J. Biochem. 230, 601606.
  • 73
    Adams, M.W.W. (1993) Enzymes and proteins from organisms that grow near and above 100°C. Annu. Rev. Microbiol. 47, 627658.
  • 74
    Ringel, M., Groß, R., Krafft, T., Kröger, A. and Schauder, R. (1996) Growth of Wolinella succinogenes with elemental sulfur in the absence of polysulfide. Arch. Microbiol. 165, 6264.
  • 75
    Wloczyk, C., Kröger, A., Göbel, T., Holdt, G. and Steudel, R. (1989) The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes. Arch. Microbiol. 152, 600605.
  • 76
    Bronder, M., Mell, H., Stupperich, E. and Kröger, A. (1982) Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch. Microbiol. 131, 216223.
  • 77
    Mell, H., Bronder, M. and Kröger A. (1982) Cell yields of Vibrio succinogenes growing with formate and fumarate as sole carbon and energy sources in chemostat culture. Arch. Microbiol. 131, 224228.
  • 78
    Kröger, A. and Winkler, E. (1981) Phosphorylative fumarate reduction in Vibrio succinogenes: Stoichiometry of ATP synthesis. Arch. Microbiol. 129, 100104.
  • 79
    Brune, A., Spillecke, J. and Kröger, A. (1987) Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane. Biochim. Biophys. Acta 893, 499507.
  • 80
    Schröder, I., Kröger, A. and Macy, J.M. (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch. Microbiol. 149, 572579.
  • 81
    Krafft, T., Bokranz, M., Klimmek, O., Schröder, I., Fahrenholz, F., Kojro, E. and Kröger, A. (1992) Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 206, 503510.
  • 82
    Jankielewicz, A., Schmitz, R.A., Klimmek, O. and Kröger, A. (1994) Polysulphide reductase and formate dehydrogenase from Wolinella succinogenes contain molybdopterin guanine dinucleotide. Arch. Microbiol. 162, 238242.
  • 83
    Klimmek, O. (1996) Dissertation, FB Biologie, University of Frankfurt.
  • 84
    Droß, F., Geisler, V., Lenger, R., Theis, F., Krafft, T., Fahrenholz, F., Kojro, E., Duchêne, A., Tripier, D., Juvenal, K. and Kröger, A. (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur. J. Biochem. 206, 93102.
  • 85
    Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K.V. and Rees, D.C. (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272, 16151621.
  • 86
    Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C. and Sun, P.D. (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 13051308.
  • 87
    Groß, R., Simon, J., Theis, F. and Kröger, A. (1998) Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch. Microbiol. 170, 5058.
  • 88
    Kröger, A. and Unden, G. (1985) The function of menaquinone in bacterial electron transport. In: Coenzyme Q (Lenaz, G., Ed.), pp. 285–300. John Wiley, Chichester.
  • 89
    Kröger, A., Geisler, V., Lemma, E., Theis, F. and Lenger, R. (1992) Bacterial fumarate respiration. Arch. Microbiol. 158, 311314.
  • 90
    Jankielewicz, A., Klimmek, O. and Kröger, A. (1995) The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes. Biochim. Biophys. Acta 1231, 157162.
  • 91
    Hardt, S.L. (1979) Rates of diffusion controlled reactions in one, two and three dimensions. Biophys. Chem. 10, 239243.
  • 92
    Chazotte, B. and Hackenbrock, C.R. (1988) The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. Biol. Chem. 28, 1435914367.
  • 93
    Unden, G. and Kröger, A. (1986) Reconstitution of a functional electron transport chain from purified formate dehydrogenase and fumarate reductase complex. Methods Enzymol. 126, 387399.
  • 94
    Groß, R., Simon, J., Lancaster, C.R.D. and Kröger, A. (1998) Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol. Microbiol., 30, 639646.
  • 95
    Berks, B.C., Dudley Page, M., Richardson, D.J., Reilly, A., Cavill, A., Outen, F. and Ferguson, S.J. (1995) Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol. Microbiol. 15, 319331.
  • 96
    Lorenzen, J.P., Kröger, A. and Unden, G. (1993) Regulation of anaerobic respiratory pathways in Wolinella succinogenes by the presence of electron acceptors. Arch. Microbiol. 159, 477483.
  • 97
    Hungate, R.E. (1966) The Rumen and its Microbes. Academic Press, London.
  • 98
    Kreis-Kleinschmidt, V., Fahrenholz, F., Kojro, E. and Kröger, A. (1995) Periplasmic sulphide dehydrogenase (Sud) from Wolinella succinogenes: Isolation, nucleotide sequence of the sud gene and its expression in Escherichia coli. Eur. J. Biochem. 227, 137142.
  • 99
    Geisler, V., Ullmann, R. and Kröger, A. (1994) The direction of the proton exchange associated with the redox reactions of menaquinone during the electron transport in Wolinella succinogenes. Biochim. Biophys. Acta 1184, 219226.
  • 100
    Ma, K., Schicho, R.N., Kelly, R.M. and Adams, M.W.W. (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl. Acad. Sci. USA 90, 53415344.
  • 101
    Ma, K. and Adams, M.W. (1994) Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J. Bacteriol. 176, 65096517.
  • 102
    Schönheit, P. and Schäfer, T. (1995) Metabolism of hyperthermophiles. W. J. Microbiol. Biotech. 11, 2657.
  • 103
    Means, J.L. and Hinchee, R.E. (1994) Emerging Technology for the Bioremediation of Metals. CRC Press, Boca Raton, FL.
  • 104
    Stetter, K.O., Fiala, G., Huber, G., Huber, R. and Segerer, A. (1990) Hyperthermophilic organisms. FEMS Microbiol. Rev. 75, 117124.
  • 105
    Maier, R.J. (1996) Respiratory metabolism in hyperthermophilic organisms: hydrogenases, sulfur reductases, and electron transport factors that function at temperatures exceeding 100°C. Adv. Prot. Chem. 48, 3573.
  • 106
    Pihl, T.D. and Maier, R.J. (1991) Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii. J. Bacteriol. 173, 18391844.
  • 107
    Pihl, T.D., Black, L.K., Schulman, B.A. and Maier, R.J. (1992) Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. J. Bacteriol. 174, 137143.
  • 108
    Peinemann, S., Hedderich, R., Blaut, M., Thauer, R.K. and Gottschalk, G. (1990) ATP synthesis coupled to electron transfer from H2 to the heterodisulfide of 2-mercaptoethanesulfonate and 7-mercaptoheptanoylthreonine phosphate in vesicle preparations of the methanogenic bacterium strain Gö1. FEBS Lett. 263, 5760.
  • 109
    Deppenmeier, U., Blaut, M., Mahlmann, A. and Gottschalk, G. (1990) Reduced coenzyme F420:heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc. Natl. Acad. Sci. USA 87, 94499453.
  • 110
    Deppenmeier, U., Blaut, M. and Gottschalk, G. (1991) H2:heterodisulfide oxidoreductase, a second energy-conserving system in the methanogenic strain Gö 1. Arch. Microbiol. 155, 272277.
  • 111
    Abken, H.-J., Tietze, M., Brodersen, J., Bäumer, S., Beifuss, U. and Deppenmeier, U. (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J. Bacteriol. 180, 20272032.
  • 112
    Boone, D.R., Whitman, W.B. and Rouvière, P. (1993) Diversity and taxonomy of methanogens. In: Methanogenesis (Ferry, J.G., Ed.), pp. 35–80. Chapman and Hall, New York, NY.
  • 113
    Heiden, S., Hedderich, R., Setzke, E. and Thauer, R.K. (1993) Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Eur. J. Biochem. 213, 529535.
  • 114
    Heiden, S., Hedderich, R., Setzke, E. and Thauer, R.K. (1994) Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri. Eur. J. Biochem. 221, 855861.
  • 115
    Künkel, A., Vaupel, M., Heim, S., Thauer, R.K. and Hedderich, R. (1997) Heterodisulfide reductase from methanol grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur. J. Biochem. 244, 226234.
  • 116
    Simianu, M., Murakami, E., Brewer, J.M. and Ragsdale, S.W. (1998) Purification and properties of the heme- and iron-sulfur-containing heterodisulfide reductase from Methanosarcina thermophila. Biochemistry 37, 1002710039.
  • 117
    Deppenmeier, U., Blaut, M., Schmidt, B. and Gottschalk, G. (1992) Purification and properties of F420-nonreactive membrane bound hydrogenase from Methanosarcina mazei strain Gö1. Arch. Microbiol. 157, 505511.
  • 118
    Kemner, J.M. and Zeikus, J.G. (1994) Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeri MS. Arch. Microbiol. 161, 4754.
  • 119
    Deppenmeier, U., Blaut, M., Lentes, S., Herzberg, C. and Gottschalk, G. (1995) Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Eur. J. Biochem. 227, 261269.
  • 120
    Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E.C., Frey, M. and Fontecilla-Camps, J.C. (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580587.
  • 121
    Deppenmeier, U. (1995) Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Gö1. Arch. Microbiol. 164, 370376.
  • 122
    Haase, P., Deppenmeier, U., Blaut, M. and Gottschalk, G. (1992) Purification and characterization of F420H2-dehydrogenase from Methanolobus tindarius. Eur. J. Biochem. 203, 527531.
  • 123
    Abken, H.-J. and Deppenmeier, U. (1997) Purification and properties of an F420H2 dehydrogenase from Methanosarcina mazei Gö1. FEMS Microbiol. Lett. 154, 231237.
  • 124
    Abken, H.-J., Bäumer, S., Broderson, J., Murakami, E., Ragsdale, S.W., Gottschalk, G. and Deppenmeier, U. (1998) Membrane-bound electron transport and H+-translocation in Methanosarcina mazei Gö1. BIOspectrum Sonderausgabe, 38.
  • 125
    Bäumer, S., Murakami, E., Brodersen, J., Gottschalk, G., Ragsdale, S.W. and Deppenmeier, U. (1998) The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase. FEBS Lett. 428, 295298.
  • 126
    Kunow, J., Linder, D., Stetter, K.O. and Thauer, R.K. (1994) F420H2:quinone oxidoreductase from Archaeoglobus fulgidus: Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur. J. Biochem. 223, 503511.
  • 127
    Klenk, H.P., Clayton, R.A., Tomb, J.F., White, O., Nelson, K.E., Ketchum, K.A., Dodson, R.J., Gwinn, M., Hickey, E.K., Peterson, J.D., Richardson, D.L., Kerlavage, A.R., Graham, D.E., Kyrpides, N.C., Fleischmann, R.D., Quackenbush, J., Lee, N.H., Sutton, G.G., Gill, S., Kirkness, E.F., Dougherty, B.A., McKenney, K., Adams, M.D., Loftus, B. and Venter, J.C. (1997) The complete genome sequence of the hyperthermophilic sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364370.
  • 128
    Deppenmeier, U., Blaut, M., Mahlmann, A. and Gottschalk, G. (1990). Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Gö1 and Methanolobus tindarius. FEBS Lett. 261, 199–203.
  • 129
    Lovley, D.R. and Ferry, J.G. (1985) Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 49, 247249.
  • 130
    Krzycki, J.A., Morgan, J.B., Conrad, R. and Zeikus, J.G. (1987) Hydrogen metabolism during methanogenesis from acetate by Methanosarcina barkeri. FEMS Microbiol. Lett. 40, 193198.
  • 131
    Terlesky, K.C. and Ferry, J.G. (1988) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Bacteriol. 263, 40754079.
  • 132
    Fischer, R. and Thauer, R.K. (1990) Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269, 368372.
  • 133
    Bott, M., Eikmanns, B. and Thauer, R.K. (1986) Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159, 393398.
  • 134
    Bott, M. and Thauer, R.K. (1989) Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem. 179, 469472.
  • 135
    Künkel, A., Vorholt, J.A., Thauer, R.K. and Hedderich, R. (1998) An E. coli hydrogenase 3 type hydrogenase in methanogenic archaea. Eur. J. Biochem. 252, 467476.
  • 136
    Fox, J.D., Kerby, R.L., Roberts, G.P. and Ludden, P.W. (1996) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J. Bacteriol. 178, 15151524.
  • 137
    Böhm, R., Sauter, M. and Böck, A. (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenylase components. Mol. Microbiol. 4, 231243.
  • 138
    Andrews, S.C., Berks, B.C., McClay, J., Ambler, A., Quail, M.A., Golby, P. and Guest, J.R. (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocation formate hydrogen lyase system. Microbiology 143, 36333647.
  • 139
    Meuer, J. (1998) Diploma thesis, Universität Marburg.
  • 140
    Peer, C.W., Painter, M.H., Rasche, M.E. and Ferry, J.G. (1994) Characterization of a CO:heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila. J. Bacteriol. 176, 69746979.
  • 141
    Latimer, M.T., Painter, M.H. and Ferry, J.G. (1996) Characterization of an iron-sulfur flavoprotein from Methanosarcina thermophila. J. Biol. Chem. 271, 2402324028.
  • 142
    Hedderich, R., Berkessel, A. and Thauer, R.K. (1990) Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193, 255261.
  • 143
    Setzke, E., Hedderich, R., Heiden, S. and Thauer, R.K. (1994) H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur. J. Biochem. 220, 139148.
  • 144
    Hedderich, R., Koch, J., Linder, D. and Thauer, R.K. (1994) The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine nucleotide-dependent thioredoxin reductases. Eur. J. Biochem. 225, 253261.
  • 145
    Reeve, J.N., Beckler, G.S., Cram, D.S., Hamilton, P.T., Brown, J.W., Krzycki, J.A., Kolodziej, A.F., Alex, L., Orme-Johnson, W.H. and Walsh, C.T. (1989) A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc. Natl. Acad. Sci. USA 86, 30313035.
  • 146
    Hedderich, R., Albracht, S.P.J., Linder, D., Koch, J. and Thauer, R.K. (1992) Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum. The mvhB gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett. 298, 6568.
  • 147
    Steigerwald, V.J., Pihl, T.D. and Reeve, J.N. (1992) Identification and isolation of the polyferredoxin from Methanobacterium thermoautotrophicum strain ΔH. Proc. Natl. Acad. Sci. USA 89, 69296933.
  • 148
    Nölling, J., Ishii, M., Koch, J., Pihl, T.D., Reeve, J.N., Thauer, R.K. and Hedderich, R. (1995) Characterization of a 45-kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 231, 628638.
  • 149
    Schönheit, P., Moll, J. and Thauer, R.K. (1980) Growth parameters (Ks, μmax, YS) of Methanobacterium thermoautotrophicum. Arch. Microbiol. 127, 5965.
  • 150
    Morgan, R.M., Pihl, T.D., Nölling, J. and Reeve, J.N. (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicumΔH. J. Bacteriol. 179, 889898.
  • 151
    Smith, D.R., Doucette-Stamm, L.A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier, B., Qiu, D., Spadafora, R., Vicaire, R., Wang, Y., Wierzbowski, J., Gibson, R., Jiwani, N., Caruso, A., Bush, D., Safer, H., Patwell, D., Prabhakar, S., McDougall, S., Tulig, C., Shimer, G., Goyal, A., Church, G., Daniels, C.J., Mao, J., Rice, P., Pietrokovski, S., Nölling, J. and Reeve, J.N. (1997) The complete genome sequence of Methanobacterium thermoautotrophicum strain ΔH: functional analysis and comparative genomics. J. Bacteriol. 179, 71357155.
  • 152
    Friedrich, T. and Weiss, H. (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J. Theor. Biol. 187, 529540.
  • 153
    Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocaine, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.F., Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock, K.G., Merrik, J.M., Glodek, A., Scott, J.L., Geoghagen, N.S.M., Weidman, J.F., Fuhrmann, J.L., Nguyen, D., Utterback, T.R., Kelley, J.M., Peterson, J.D., Sadow, P.W., Hanna, M.C., Cotton, M.D., Roberts, K.M., Hurst, M.A., Kaine, P.P., Borodovsky, M., Klenk, H.P., Fraser, C.M., Smith, H.O., Woese, C.R. and Venter, J.C. (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273, 10581073.
  • 154
    Neijssel, O.E. and Teixera de Mattos, M.J. (1994) The energetics of bacterial growth: a reassessment. Mol. Microbiol. 13, 179182.
  • 155
    Schwörer, B. and Thauer, R.K. (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic archaea. Arch. Microbiol. 155, 459465.
  • 156
    Sorgenfrei, O., Müller, S., Pfeiffer, M., Sniezko, I. and Klein, A. (1997) The [NiFe] hydrogenases of Methanococcus voltae: genes, enzymes and regulation. Arch. Microbiol. 167, 189195.
  • 157
    Bobik, T.A. and Wolfe, R.S. (1989) An unusual thiol-driven fumarate reductase in Methanobacterium with the production of the heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine-O3-phosphate. J. Biol. Chem. 264, 1871418718.
  • 158
    Heim, S., Künkel, A., Thauer, R.K. and Hedderich, R. (1998) Thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum: identification of the catalytic sites for fumarate reduction and thiol oxidation. Eur. J. Biochem. 253, 292299.
  • 159
    Staples, C.R., Ameyibor, E., Fu, W., Gardet-Salvi, L., Stritt-Etter, A.-L., Schürmann, P., Knaff, D.B. and Johnson, M.K. (1996) The function and properties of the iron-sulfur center in spinach ferredoxin:thioredoxin reductase: a new biological role for iron-sulfur clusters. Biochemistry 35, 1142511434.
  • 160
    Staples, C.R., Gaymard, E., Stritt-Etter, A.-L., Telser, J., Hoffman, B.M., Schürmann, P., Knaff, D.B. and Johnson, M.K. (1998) Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37, 46124620.
  • 161
    Williams, C.H. Jr. (1995) Flavoprotein structure and mechanism. 6. Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J. 9, 12671276.
  • 162
    Kunst et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249256.
  • 163
    Oliver, K. and Harris, D., EMBL accession number z97991.
  • 164
    Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J. and Swanson, R.V. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353358.
  • 165
    Rakhely, G., Colbeau, A., Garin, J., Vignais, P.M. and Kovacs, K.L. (1998) Unusual organization of the genes coding for HydSL, the stable [NiFe] hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS. J. Bacteriol. 180, 14601465.
  • 166
    Janssen, S., Schäfer, G., Anemüller, S. and Moll, R. (1997) A succinate dehydrogenase with novel structure and properties from the hyperthermophilic archaeon Sulfolobus acidocaldarius: genetic and biophysical characterization. J. Bacteriol. 179, 55605569.
  • 167
    Nakamura, Y., Kaneko, T., Hirosawa, M., Miyajima, N. and Tabata, S. (1998) CyanoBase, a WWW database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucleic Acids Res. 26, 6367.
  • 168
    Rossi, M., Pollock, W.B.R., Reij, M.W., Keon, R.G., Fu, R. and Voordouw, G. (1993) The hmc operon of Desulfovibrio vulgaris subspec. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J. Bacteriol. 175, 46994711.
  • 169
    Pott, A.S. and Dahl, C. (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144, 18811894.
  • 170
    Cole, S.T., Eiglmeier, K., Ahemd, S., Honore, N., Elmers, L., Anderson, W.F. and Weiner, J.H. (1988) Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J. Bacteriol. 170, 24482456.
  • 171
    Pellicer, M., Badia, J., Aguilar, J. and Baldoma, L. (1996) glc Locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and glc regulator protein. J. Bacteriol. 178, 20512059.