• 1
    Huxtable, R.J. (1992) Physiological actions of taurine. Physiol. Rev. 72, 101163.
  • 2
    Field, J.A., Field, T.M., Poiger, T., Siegrist, H. and Giger, W. (1995) Fate of secondary alkane sulfonate surfactants during municipal wastewater treatment. Water Res. 29, 13011307.
  • 3
    Lange, F.T., Wenz, M. and Brauch, H.-J. (1995) Trace-level determination of aromatic sulfonates in water by on-line ion-pair extraction/ion-pair chromatography and their behaviour in the aquatic environment. J. High Resolut. Chromatogr. 18, 243252.
  • 4
    Altenbach, B. and Giger, W. (1995) Determination of benzene- and naphthalenesulfonates in wastewater by solid-phase extraction with graphitized carbon black and ion-pair liquid chromatography with UV detection. Anal. Chem. 67, 23252333.
  • 5
    Bretscher, H. (1981) Waste disposal in the chemical industry. In: Microbial Metabolism of Xenobiotics and Recalcitrant Compounds (Leisinger, T., Cook, A.M., Hütter, R. and Nüesch, J., Eds.), pp. 65–74. Academic Press, London.
  • 6
    Wellens, H. (1990) Zur biologischen Abbaubarkeit mono- und disubstituerter Benzolderivate. Z. Wasser Abwasser Forsch. 23, 8598.
  • 7
    Field, J.A., Leenheer, J.A., Thorn, K.A., Barber, L.B., Rostad, C., Macalady, D.L. and Daniel, S.R. (1992) Identification of persistent anionic surfactant-derived chemicals in sewage effluent and groundwater. J. Contam. Hydrol. 9, 5578.
  • 8
    Poiger, T., Field, J.A., Field, T.M. and Giger, W. (1993) Determination of detergent-derived fluorescent whitening agents in sewage sludges by liquid chromatography. Anal. Methods Instrum. 1, 104113.
  • 9
    Cain, R.B. (1981) Microbial degradation of surfactants and ‘builder’ components. In: Microbial Degradation of Xenobiotics and Recalcitrant Compounds (Leisinger, T., Cook, A.M., Hütter, R. and Nüesch, J., Eds.), pp. 323–370. Academic Press, London.
  • 10
    Swisher, R.D. (1987) Surfactant Biodegradation, 2nd edn. Marcel Dekker, New York, NY.
  • 11
    Soeder, C., Luther, M. and Kneifel, H. (1988) Abbaupotential von Mikroalgen unter besonderer Berücksichtigung der Desulfonierung aromatischer Sulfonsäuren. GWF Gas Wasserfach Wasser Abwasser 129, 8285.
  • 12
    Painter, H.A. and Mosey, F.E. (1992) The anaerobic biodegradability of linear alkyl benzene sulfonate (LAS). 3rd CESIO Internat. Surfact. Cong. pp. 34–43, London, UK, June, 01–05, 1992.
  • 13
    Hooper, S.W. (1994) Biodegradation of sulfonated aromatics. In: Biological Degradation and Bioremediation of Toxic Chemicals (Chaudhry, G.R., Ed.), pp. 169–182. Chapman and Hall, London.
  • 14
    Seitz, A.P. and Leadbetter, E.R. (1995) Microbial assimilation and dissimilation of sulfonate sulfur. ACS Symp. Ser. 612, 365375.
  • 15
    Kelly, D.P. (1996) Perspectives in the microbiology of atmospheric trace gases. In: Microbiology of Atmospheric Trace Gases: Sources, Sinks and Global Change Processes (Murrell, J.C. and Kelly, D.P. Eds.), pp. 288–295. Springer, Berlin.
  • 16
    Kelly, D.P. and Murrell, J.C. (1996) Metabolism of methanesulfonic acid. In: Microbial Growth on C1 Compounds (Lidstrom, M.E. and Tabita, F.R., Eds.), pp. 33–40. Kluwer, Dordrecht.
  • 17
    Cook, A.M. (1998) Sulfonated surfactants and related compounds: facets of their desulfonation by aerobic and anaerobic bacteria. Tenside Surfact. Deterg. 35, 5256.
  • 18
    Lie, T.L., Leadbetter, J.R. and Leadbetter, E.R. (1998) Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol. J. 15, 135149.
  • 19
    Dodgson, K.S., White, G.F. and Fitzgerald, J.W. (1982) Sulfatases of Microbial Origin. CRC Press, Boca Raton, FL.
  • 20
    Higgins, T.P., Snape, J.R. and White, G.F. (1993) Comparison of pathways for biodegradation of monomethyl sulphate in Agrobacterium and Hyphomicrobium species. J. Gen. Microbiol. 139, 29152920.
  • 21
    Liebman, J.F. (1991) Thermochemistry of sulphonic acids and their derivatives. In: The Chemistry of Sulphonic Acids, Esters and their Derivatives (Patai, S. and Rappoport, Z., Eds.), pp. 283–321. Wiley, Chichester.
  • 22
    Koechlin, B.A. (1954) The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fibers. Proc. Natl. Acad. Sci. USA 40, 6062.
  • 23
    Frank, P., Hedman, B., Carlson, R.M.K., Tyson, T.A., Roe, A.L. and Hogson, K.O. (1987) A large reservoir of sulfate and sulfonate residues within plasma cells from Ascidia ceratodes, revealed by X-ray absorption near-edge structure spectroscopy. Biochemistry 26, 49754979.
  • 24
    Vairavamurthy, A., Manowitz, B., Luther III, G.W. and Jeon, Y. (1993) Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism. Geochim. Cosmochim. Acta 57, 16191623.
  • 25
    Autry, A.R. and Fitzgerald, J.W. (1990) Sulfonate S: a major form of forest soil organic sulfur. Biol. Fertil. Soils 10, 5056.
  • 26
    Vairamurthy, A., Zhou, W., Eglinton, T. and Manowitz, B. (1994) Sulfonates: a new class of organic sulfur compounds in marine sediments. Geochim. Cosmochim. Acta 58, 46814687.
  • 27
    van Loon, W.M.G.M., Boon, J.J. and de Groot, B. (1993) Quantitative analysis of sulfonic acid groups in macromolecular lignosulfonic acids and aquatic humic substances by temperature-resolved pyrolysis-mass spectrometry. Environ. Sci. Technol. 27, 23872396.
  • 28
    Stevenson, F.J. (1996) Humus Chemistry: Genesis Composition Reactions. Wiley, New York.
  • 29
    Strickland, T.C., Fitzgerald, J.W. and Swank, W.T. (1986) In situ measurements of sulfate incorporation into forest floor and soil organic matter. Can. J. For. Res. 16, 549553.
  • 30
    Novak, M., Bottrell, S.H., Fottova, D., Buzek, F., Groscheova, H. and Zak, K. (1996) Sulfur isotope signals in forest soils of central Europe along an air pollution gradient. Environ. Sci. Technol. 30, 34733476.
  • 31
    White, R.H. (1986) Intermediates in the biosynthesis of coenzyme M (2-mercaptoethanesulfonic acid). Biochemistry 25, 53045308.
  • 32
    Pugh, C.E., Roy, A.B., Hawkes, T. and Harwood, J.L. (1995) A new pathway for the synthesis of the plant sulpholipid, sulphoquinovosyldiacylglycerol. Biochem. J. 309, 513519.
  • 33
    Pawlenko, S. (1985) Sulfonsäuren und deren Derivate. In: Methoden der Organischen Chemie (Houben-Weyl) (Klamann, D., Ed.), 4th edn., vol. E11, pp. 1055–1060. Thieme, Stuttgart.
  • 34
    Kim, I.S., Sasinos, F.I., Stephens, R.D. and Brown, M.A. (1990) Anion-exchange chromatography particle beam mass spectrometry for the characterization of aromatic sulfonic acids as the major organic pollutants in leachates from Stringfellow, California. Environ. Sci. Technol. 24, 18321836.
  • 35
    Altenbach, B. (1996) PhD Thesis. Determination of substituted benzene- and naphthalenesulfonates in waste water and their behaviour in sewage treatment. Swiss Federal Institute of Technology, Zürich, Switzerland.
  • 36
    Field, J.A. and Thurman, E.M. (1996) Glutathione conjugation and contaminant transformation. Environ. Sci. Technol. 30, 14131418.
  • 37
    Thurnheer, T., Köhler, T., Cook, A.M. and Leisinger, T. (1986) Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J. Gen. Microbiol. 132, 12151220.
  • 38
    Johnston, J.B., Murray, K. and Cain, R.B. (1975) Microbial metabolism of aryl sulphonates. A reassessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie van Leeuwenhoek 41, 493511.
  • 39
    Thiele, B., Günther, K. and Schwuger, M.J. (1998) Spurenanalytik von Tensiden. Anal. Taschenbuch 18, 4566.
  • 40
    Benson, A.A. (1963) The plant sulfolipid. Adv. Lipid Res. 1, 387394.
  • 41
    Locher, H.H., Leisinger, T. and Cook, A.M. (1991) 4-Sulphobenzoate 3,4-dioxygenase: purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem. J. 274, 833842.
  • 42
    Fuchs, G., Mohamed, M.E.S., Altenschmidt, U., Koch, J., Lack, A., Brackmann, R., Lochmeyer, C. and Oswald, B. (1994) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Biochemistry of Microbial Degradation (Ratledge, C., Ed.), pp. 513–553. Kluwer, Dordrecht.
  • 43
    Locher, H.H., Leisinger, T. and Cook, A.M. (1989) Degradation of p-toluenesulphonic acid via sidechain oxidation, desulphonation and meta ring cleavage in Pseudomonas (Comamonas) testosteroni T-2. J. Gen. Microbiol. 135, 19691978.
  • 44
    Zürrer, D., Cook, A.M. and Leisinger, T. (1987) Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl. Environ. Microbiol. 53, 14591463.
  • 45
    Kertesz, M.A., Kölbener, P., Stockinger, H., Beil, S. and Cook, A.M. (1994) Desulfonation of linear alkylbenzenesulfonate surfactants and related compounds by bacteria. Appl. Environ. Microbiol. 60, 22962303.
  • 46
    Dudley, M.W. and Frost, J.W. (1994) Biocatalytic desulfurization of arylsulfonates. Bioorg. Med. Chem. 2, 681690.
  • 47
    Kertesz, M.A. (1996) Desulfonation of aliphatic sulfonates by Pseudomonas aeruginosa PAO. FEMS Microbiol. Lett. 137, 221225.
  • 48
    Laue, H., Field, J.A. and Cook, A.M. (1996) Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ. Sci. Technol. 30, 11291132.
  • 49
    King, J.F. (1991) Acidity. In: The Chemistry of Sulphonic Acids, Esters and their Derivatives (Patai, S. and Rappoport, Z., Eds.), pp. 249–258. Wiley, Chichester.
  • 50
    Biedlingmaier, S. and Schmidt, A. (1986) Characterization of the non-constitutive ethanesulfonate uptake in Chlorella fusca. Biochim. Biophys. Acta 861, 95104.
  • 51
    Biedlingmaier, S. and Schmidt, A. (1987) Uptake and metabolism of taurine in the green alga Chlorella fusca. Physiol. Plant. 70, 688696.
  • 52
    Biedlingmaier, S. and Schmidt, A. (1987) Uptake and utilization of sulfonic acids in the cyanobacterial strains Anabaena variabilis and Plectonema 73110. Z. Naturforsch. C: Biosci. 42c, 891–896.
  • 53
    Thurnheer, T., Zürrer, D., Höglinger, O., Leisinger, T. and Cook, A.M. (1990) Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acid and orthanilic acid in Alcaligenes sp. strain O-1. Biodegradation 1, 5564.
  • 54
    Locher, H.H., Poolman, B., Cook, A.M. and Konings, W.N. (1993) Uptake of 4-toluene sulfonate by Comamonas testosteroni T-2. J. Bacteriol. 175, 10751080.
  • 55
    van der Ploeg, J.R., Weiss, M., Saller, E., Nashimoto, H., Saito, N., Kertesz, M.A. and Leisinger, T. (1996) Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J. Bacteriol. 178, 54385446.
  • 56
    Higgins, T.P., de Marco, P. and Murrell, J.C. (1997) Purification and molecular characterization of the electron transport protein of methanesulfonic acid monooxygenase. J. Bacteriol. 179, 19741979.
  • 57
    Kondo, H. and Ishimoto, M. (1975) Purification and properties of sulfoacetaldehyde sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate. J. Biochem. 78, 317325.
  • 58
    Shimamoto, G. and Berk, R.S. (1980) Taurine catabolism II. Biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement. Biochim. Biophys. Acta 632, 121130.
  • 59
    Shimamoto, G. and Berk, R.S. (1980) Taurine catabolism III. Evidence for the participation of the glyoxylate cycle. Biochim. Biophys. Acta 632, 399407.
  • 60
    Shimamoto, G. and Berk, R.S. (1979) Catabolism of taurine in Pseudomonas aeruginosa. Biochim. Biophys. Acta 569, 287292.
  • 61
    Kondo, H. and Ishimoto, M. (1987) Taurine dehydrogenase. Methods Enzymol. 143, 496499.
  • 62
    King, J.E., Jaouhari, R. and Quinn, J.P. (1997) The role of sulfoacetaldehyde sulfo-lyase in the mineralization of isethionate by an environmental Acinetobacter isolate. Microbiology 143, 23392343.
  • 63
    Kondo, H., Niki, H., Takahashi, S. and Ishimoto, M. (1977) Enzymatic oxidation of isethionate to sulfoacetaldehyde in bacterial extract. J. Biochem. 81, 19111916.
  • 64
    King, J.E. and Quinn, J.P. (1997) Metabolism of sulfoacetate by environmental Aureobacterium sp. and Comamonas acidovorans isolates. Microbiology 143, 23392343.
  • 65
    Stapley, E.O. and Starkey, R.L. (1970) Decomposition of cysteic acid and taurine by soil microorganisms. J. Gen. Microbiol. 64, 7784.
  • 66
    Braun, R. and Fromageot, P. (1962) Désamination de la taurine par Aspergillus niger. Biochim. Biophys. Acta 62, 548555.
  • 67
    Mikosch, C., Denger, K. and Cook, A.M. (1998) Anaerobic oxidation of cysteate, unpublished data.
  • 68
    Thysse, G.J.E. and Wanders, T.H. (1974) Initial steps in the degradation of n-alkane-1-sulphonates by Pseudomonas. Antonie van Leeuwenhoek 40, 2537.
  • 69
    Baker, S.C., Kelly, D.P. and Murrell, J.C. (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350, 627628.
  • 70
    Thompson, A.S., Owens, N.J.P. and Murrell, J.C. (1995) Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl. Environ. Microbiol. 61, 23882393.
  • 71
    Kelly, D.P., Baker, S.C., Trickett, J., Davey, M. and Murrell, J.C. (1994) Methylsulfonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140, 14191426.
  • 72
    Higgins, T.P., Davey, M., Trickett, J., Kelly, D.P. and Murrell, J.C. (1996) Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142, 251260.
  • 73
    Butler, C.S. and Mason, J.R. (1997) Structure–function analysis of the bacterial aromatic ring hydroxylating dioxygenases. Adv. Microb. Physiol. 38, 4784.
  • 74
    Kauppi, B., Lee, K., Carredano, F., Parales, R.E., Gibson, D.T., Eklund, H. and Ramaswamy, S. (1998) Structure of an aromatic-ring-hydroxylating dioxygenase – naphthalene 1,2-dioxygenase. Structure 6, 571586.
  • 75
    Holmes, A.J., Kelly, D.P., Baker, S.C., Thompson, A.S., de Marco, P., Kenna, A.M. and Murrell, J.C. (1997) Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfomonas methylotropha gen. nov., sp. nov.:novel methylotrophs able to grow on methylsulfonic acid. Arch. Microbiol. 167, 4653.
  • 76
    Quick, A., Russell, N.J., Hales, S.G. and White, G.F. (1994) Biodegradation of sulphosuccinate: direct desulphonation of a secondary sulphonate. Microbiology 140, 29912998.
  • 77
    Wittich, R.M., Rast, H.G. and Knackmuss, H.-J. (1988) Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl. Environ. Microbiol. 54, 18421847.
  • 78
    Endo, K., Kondo, H. and Ishimoto, M. (1977) Degradation of benzenesulfonate to sulfite in bacterial extract. J. Biochem. 82, 13971402.
  • 79
    Brilon, C., Beckmann, W. and Knackmuss, H.-J. (1981) Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl. Environ. Microbiol. 42, 4455.
  • 80
    Nörtemann, B., Baumgarten, J., Rast, H.G. and Knackmuss, H.-J. (1986) Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl. Environ. Microbiol. 52, 11951202.
  • 81
    Heiss, G., Muller, C., Altenbuchner, J. and Stolz, A. (1997) Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. Microbiology 143, 16911699.
  • 82
    Batie, C.J., Ballou, D.P. and Correll, C.C. (1991) Phthalate dioxygenase reductase and related flavin–iron–sulfur containing electron transferases. In: Chemistry and Biochemistry of Flavoenzymes (Müller, F., Ed.), vol. 3, pp. 543–556. CRC Press, Boca Raton, FL.
  • 83
    Powlowski, J. and Shingler, V. (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5, 219236.
  • 84
    Shanklin, J., Whittle, E. and Fox, B.G. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 1278712794.
  • 85
    Junker, F., Leisinger, T. and Cook, A.M. (1994) 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140, 17131722.
  • 86
    Junker, F., Field, J.A., Bangerter, F., Ramsteiner, K., Kohler, H.-P., Joannou, C.L., Mason, J.R., Leisinger, T. and Cook, A.M. (1994) Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem. J. 300, 429436.
  • 87
    Ripin, M.J., Nook, K.F. and Cook, T.M. (1971) Bacterial metabolism of aryl sulphonates. 1. Benzene sulphonate as a growth substrate for Pseudomonas testosteroni H-8. Appl. Environ. Microbiol. 21, 495499.
  • 88
    Balashov, S.V. and Boronin, A.M. (1996) Sewage-sludge bacterial isolates decomposing sulfoaromatic compounds. Microbiology (Mikrobiologiya) 65, 627631.
  • 89
    Balashov, S.V. and Boronin, A.M. (1997) Benzenesulphonic and p-toluenesulphonic acid degrading plasmids of Comamonas testosteroni. Russ. J. Genet. 33, 498503.
  • 90
    Locher, H.H., Leisinger, T. and Cook, A.M. (1991) 4-Toluene sulfonate methyl-monooxygenase from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J. Bacteriol. 173, 37413748.
  • 91
    Junker, F., Kiewitz, R. and Cook, A.M. (1997) Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J. Bacteriol. 179, 919927.
  • 92
    Junker, F., Saller, E., Schläfli Oppenberg, H.R., Kroneck, P.M.H., Leisinger, T. and Cook, A.M. (1996) Degradative pathways for p-toluenecarboxylate and p-toluenesulfonate and their multi-component oxygenases in Comamonas testosteroni strains PSB-4 and T-2. Microbiology 142, 24192427.
  • 93
    Schläfli Oppenberg, H.R., Chen, G., Leisinger, T. and Cook, A.M. (1995) Regulation of the degradative pathways from 4-toluenesulphonate and 4-toluenecarboxylate to protocatechuate in Comamonas testosteroni T-2. Microbiology 141, 18911899.
  • 94
    Junker, F. and Cook, A.M. (1997) Conjugative plasmids and the degradation of arylsulfonates in Comamonas testosteroni. Appl. Environ. Microbiol. 63, 24032410.
  • 95
    Tralau, T. (1997) Diplomarbeit. Charakterisierung von Plasmid pTSA und von Plasmiden aus der Umwelt, welche katabolische Gene des Toluolsulfonatabbaus tragen. University of Konstanz.
  • 96
    Schell, M.A. (1993) Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47, 597626.
  • 97
    Ruff, J. and Cook, A.M. (1998) unpublished data.
  • 98
    Wyndham, R.C., Cashore, A.E., Nakatsu, C.H. and Peel, M.C. (1994) Catabolic transposons. Biodegradation 5, 323342.
  • 99
    Kölbener, P., Baumann, U., Leisinger, T. and Cook, A.M. (1995) Non-degraded metabolites arising from the biodegradation of commercial linear alkylbenzenesulfonate (LAS) surfactants in a laboratory trickling filter. Environ. Toxicol. Chem. 14, 561569.
  • 100
    Focht, D.D. and Williams, F.D. (1970) The degradation of p-toluenesulphonate by a Pseudomonas. Can. J. Microbiol. 16, 309316.
  • 101
    Mampel, J. (1997) Diplomarbeit. Reinigung und Charakterisierung des Orthanilat-Dioxygenase-Systems in Alcaligenes sp. Stamm O-1. University of Konstanz.
  • 102
    Jahnke, M., El-Banna, T., Klintworth, R. and Auling, G. (1990) Mineralization of orthanilic acid is a plasmid-associated trait in Alcaligenes sp. O-1. J. Gen. Microbiol. 136, 22412249.
  • 103
    Jahnke, M., Lehmann, F., Schoebel, A. and Auling, G. (1993) Transposition of the TOL catabolic genes (Tn4651) into the degradative plasmid pSAH of Alcaligenes sp. O-1 ensures simultaneous mineralization of sulpho- and methyl-substituted aromatics. J. Gen. Microbiol. 139, 19591966.
  • 104
    Hammer, A., Stolz, A. and Knackmuss, H.-J. (1996) Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol. Arch. Microbiol. 166, 92100.
  • 105
    Feigel, B.J. and Knackmuss, H.-J. (1988) Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol. Lett. 55, 113118.
  • 106
    Feigel, B.J. and Knackmuss, H.-J. (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch. Microbiol. 159, 124130.
  • 107
    Contzen, M., Wittich, R.-M., Knackmuss, H.-J. and Stolz, A. (1996) Degradation of benzene 1,3-disulfonate by a mixed bacterial culture. FEMS Microbiol. Lett. 136, 4550.
  • 108
    Schulz, S. (1998) Diplomarbeit. Der Abbauweg von 2-(4-Sulfophenyl)butyrat als Kohlenstoff-und Energiequelle für aerobe Bakterien. University of Konstanz.
  • 109
    Thurnheer, T., Cook, A.M. and Leisinger, T. (1988) Co-culture of defined bacteria to degrade seven sulfonated aromatic compounds: efficiency, rates and phenotypic variations. Appl. Microbiol. Biotechnol. 29, 605609.
  • 110
    Kölbener, P., Baumann, U., Cook, A.M. and Leisinger, T. (1994) 3-Nitrobenzenesulfonic acid and 3-aminobenzensulfonic acid in a laboratory trickling filter: biodegradability with different activated sludges. Water Res. 28, 18551860.
  • 111
    Locher, H.H., Thurnheer, T., Leisinger, T. and Cook, A.M. (1989) 3-Nitrobenzenesulfonate, 3-aminobenzenesulfonate and 4-aminobenzenesulfonate as sole carbon sources for bacteria. Appl. Environ. Microbiol. 55, 492494.
  • 112
    Paszczynski, A., Pastigrigsby, M.B., Goszczynski, S., Crawford, R.L. and Crawford, D.L. (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl. Environ. Microbiol. 58, 35983604.
  • 113
    Muralikrishna, C. and Renganathan, V. (1993) Peroxidase-catalyzed desulfonation of 3,5-dimethyl-4-hydroxy- and 3,5-dimethyl-4-aminobenzenesulfonic acids. Biochem. Biophys. Res. Commun. 1197, 798804.
  • 114
    Goszczynski, S., Paszczynski, A., Pasti-Grigsby, M.B., Crawford, R.L. and Crawford, D.L. (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J. Bacteriol. 176, 13391347.
  • 115
    Kirk, T.K. and Farrell, R.L. (1987) Enzymatic ‘combustion’: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465505.
  • 116
    Kertesz, M.A., Cook, A.M. and Leisinger, T. (1994) Microbial metabolism of sulfur- and phosphorus-containing xenobiotics. FEMS Microbiol. Rev. 15, 195215.
  • 117
    Kertesz, M.A., Leisinger, T. and Cook, A.M. (1993) Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J. Bacteriol. 175, 11871190.
  • 118
    Quadroni, M., Staudenmann, W., Kertesz, M. and James, P. (1996) Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur. J. Biochem. 239, 773781.
  • 119
    Hummerjohann, J., Küttel, E., Quadroni, M., Leisinger, T. and Kertesz, M.A. (1998) Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144, 13751386.
  • 120
    Seitz, A.P., Leadbetter, E.R. and Godchaux III, W. (1993) Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans. Arch. Microbiol. 159, 440444.
  • 121
    Uria-Nickelsen, M.R., Leadbetter, E.R. and Godchaux III, W. (1993) Sulfonate utilization by enteric bacteria. J. Gen. Microbiol. 139, 203208.
  • 122
    Uria-Nickelsen, M.R., Leadbetter, E.R. and Godchaux III, W. (1993) Sulfonate-sulfur assimilation by yeasts resembles that of bacteria. FEMS Microbiol. Lett. 114, 7378.
  • 123
    Uria-Nickelson, M.R., Godchaux III, W. and Leadbetter, E.R. (1994) Comparative aspects of utilization of sulfonate and other sulfur sources by Escherichia coli K12. Arch. Microbiol. 161, 434438.
  • 124
    Uria-Nickelsen, M.R., Leadbetter, E.R. and Godchaux III, W. (1994) Sulfonate-sulfur utilization involves a portion of the assimilatory sulfate reduction pathway in Escherichia coli. FEMS Microbiol. Lett. 123, 4348.
  • 125
    Eichhorn, E., van der Ploeg, J.R., Kertesz, M.A. and Leisinger, T. (1997) Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem. 272, 2303123036.
  • 126
    van der Ploeg, J.R., Iwanicka-Nowicka, R., Kertesz, M.A., Leisinger, T. and Hryniewicz, M.H. (1997) Involvement of the CysB and Cbl regulatory proteins in expression of the tau ABCD operon and other sulfate-starvation-inducible genes in Escherichia coli. J. Bacteriol. 179, 76717678.
  • 127
    Kertesz, M.A., Rist, W., Schmidt-Larbig, K. and Wüest, T. (1998) A novel FMNH2-dependent methanesulfonate monooxygenase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. unpublished data.
  • 128
    Biedlingmaier, S. and Schmidt, A. (1983) Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca. Arch. Microbiol. 136, 124130.
  • 129
    King, J.E. and Quinn, J.P. (1997) The utilization of organosulphonates by soil and freshwater bacteria. Lett. Appl. Microbiol. 24, 474478.
  • 130
    Nörtemann, B., Kuhm, A.E., Knackmuss, H.-J. and Stolz, A. (1994) Conversion of substituted naphthalenesulfonates by Pseudomonas sp. BN6. Arch. Microbiol. 161, 320327.
  • 131
    Haug, W., Schmidt, A., Nörtemann, B., Hempel, D.C., Stolz, A. and Knackmuss, H.J. (1991) Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl. Environ. Microbiol. 57, 31443149.
  • 132
    Mampel, J., Hitzler, T., Ritter, A. and Cook, A.M. (1998) Desulfonation of the biotransformation products from commercial linear alkylbenzenesulfonates (LAS). Environ. Toxicol. Chem. 17, in press.
  • 133
    Rein, U., Mampel, J. and Cook, A.M. (1998) Bacterial cleavage of nitrogen to sulfone bonds in sulfamide and 1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide: formation of 2-nitrobenzamide by Gordonia sp. unpublished data.
  • 134
    Key, B.D., Howell, R.D. and Criddle, C.S. (1998) Defluorinationof organofluorine sulfur compounds by Pseudomonas sp. strain S2. Environ. Sci. Technol. 32, 22832287.
  • 135
    Hitzler, T. and Cook, A.M. (1996) unpublished data.
  • 136
    Soeder, C.J., Hegewald, E. and Kneifel, H. (1987) Green microalgae can use naphthalenesulfonic acids as sources of sulfur. Arch. Microbiol. 148, 260263.
  • 137
    Kneifel, H., Elmendorff, K., Hegewald, E. and Soeder, C.J. (1997) Biotransformation of 1-naphthalenesulfonic acid by the green alga Scenedesmus obliquus. Arch. Microbiol. 167, 3237.
  • 138
    Lie, T.J., Pitta, T., Leadbetter, E.R., Godchaux III, W. and Leadbetter, J.R. (1996) Sulfonates: novel electron acceptors in anaerobic respiration. Arch. Microbiol. 166, 204210.
  • 139
    Laue, H., Denger, K. and Cook, A.M. (1997) Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl. Environ. Microbiol. 63, 20162021.
  • 140
    Laue, H. and Cook, A.M. (1998) unpublished data.
  • 141
    Baron, E.J., Summanen, P., Downes, J., Roberts, M.C., Wexler, H. and Finegold, S.M. (1989) Bilophila wadsworthia, gen. nov. and sp. nov., a unique Gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J. Gen. Microbiol. 135, 34053411.
  • 142
    Finegold, S., Summanen, P., Hunt Gerardo, S. and Baron, E. (1992) Clinical importance of Bilophila wadsworthia. Eur. J. Clin. Microbiol. Inf. Dis. 11, 10581063.
  • 143
    Schumacher, U.K., Eiring, P. and Häcker, F.-M. (1997) Incidence of Bilophila wadsworthia in appendiceal, peritoneal and faecal samples of children. Clin. Microbiol. Infect. 3, 134136.
  • 144
    Schumacher, U.K., Lutz, F. and Werner, H. (1996) Taurine and taurine conjugated bile acids enhance growth of Bilophila wadsworthia. 21st International Congress on Microbial Ecology and Disease, Paris, pp. 28–30 October 1996.
  • 145
    Laue, H., Schumacher, U.K. and Cook, A.M. (1998) Taurine reduction powers rapid growth of Bilophila wadsworthia. Anaerobe, submitted for publication.
  • 146
    Dahl, C., Koch, H.-G., Keuken, O. and Trüper, H.G. (1990) Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeoglobus fulgidus. FEMS Microbiol. Lett. 67, 2732.
  • 147
    Denger, K., Laue, H. and Cook, A.M. (1997) Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143, 19191924.
  • 148
    Mikosch, C. (1997) Diplomarbeit. Anaerobe mikrobielle Oxidation sulfonierter Verbindungen. University of Konstanz.
  • 149
    Denger, K., Laue, H. and Cook, A.M. (1997) Thiosulfate as a metabolic product: the bacterial fermentation of taurine. Arch. Microbiol. 168, 297301.
  • 150
    J?rgensen, B.B. (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249, 152–154.
  • 151
    Laue, H., Denger, K. and Cook, A.M. (1997) Fermentation of cysteate by a sulfate-reducing bacterium. Arch. Microbiol. 168, 210214.
  • 152
    Bak, F. and Cypionka, H. (1987) A novel type of energy metabolism involving fermentation of inorganic sulfur compounds. Nature 326, 891892.
  • 153
    Kondo, H., Anada, H., Ohsawa, K. and Ishimoto, M. (1971) Formation of sulfoacetaldehyde from taurine in bacterial extracts. J. Biochem. 69, 621623.
  • 154
    Toyama, S., Miyasato, K., Yasuda, M. and Soda, K. (1973) Occurrence of taurine-pyruvate aminotransferase in bacterial extract. Agric. Biol. Chem. 37, 29392941.
  • 155
    Denger, K. and Cook, A.M. (1998) unpublished data.
  • 156
    Chien, C.-C., Leadbetter, E.R. and Godchaux III, W. (1995) Sulfonate-sulfur can be assimilated for fermentative growth. FEMS Microbiol. Lett. 129, 189194.
  • 157
    Chien, C.-C., Leadbetter, E.R. and Godchaux III, W. (1997) Taurine-sulfur assimilation and taurine-pyruvate aminotransferase activity in anaerobic bacteria. Appl. Environ. Microbiol. 63, 30213024.
  • 158
    Denger, K., Kertesz, M.A., Vock, E.H., Schön, R., Mägli, A. and Cook, A.M. (1996) Anaerobic desulfonation of 4-tolylsulfonate and 2-(4-sulfophenyl)butyrate by a Clostridium sp. Appl. Environ. Microbiol. 62, 15261530.
  • 159
    Denger, K. and Cook, A.M. (1997) Assimilation of sulfur from alkyl- and arylsulfonates by Clostridium spp. Arch. Microbiol. 167, 177181.
  • 160
    Denger, K. and Cook, A.M. (1998) Linear alkylbenzenesulfonate (LAS) bioavailable to anaerobic bacteria as a source of sulfur. J. Appl. Microbiol., in press.
  • 161
    White, R.H. (1988) Characterization of the enzymatic conversion of sulfoacetaldehyde and L-cysteine into coenzyme M (2-mercaptomethanesulfonic acid). Biochemistry 27, 74587462.
  • 162
    Consden, R., Gordon, A.H. and Martin, A.J.P. (1946) The identification of amino-acids derived from cysteine in chemically modified wool. Biochem. J. 40, 580582.
  • 163
    Koshikawa, T., Nakashio, S., Kusuyama, K., Ichikawa, T. and Kondo, M. (1981) Presence of cysteic acid in the sporangium and its metabolic pathway during sporulation of Bacillus subtilis NRRL B558. J. Gen. Microbiol. 124, 415423.
  • 164
    Bonson, P.P.M., Spudich, J.A., Nelson, D.L. and Kornberg, A. (1969) Biochemical studies of bacterial sporulation and germination XII. A sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J. Bacteriol. 98, 6268.
  • 165
    Holst, P.B., Nielsen, S.E., Anthoni, U., Bisht, K.S., Christophersen, C., Gupta, S., Parmar, V.S., Nielsen, P.H., Sahoo, D.B. and Singh, A. (1994) Isethionate in certain red algae. J. Appl. Phycol. 6, 443446.
  • 166
    Martelli, H.L. and Benson, A.A. (1964) Sulfocarbohydrate metabolism 1. Bacterial production and utilization of sulfoacetate. Biochim. Biophys. Acta 93, 169171.
  • 167
    Godchaux III, W. and Leadbetter, E.R. (1984) Sulfonolipids of gliding bacteria: structure of the N-acylaminosulfonates. J. Biol. Chem. 259, 29822990.
  • 168
    Anderson, R., Kates, M. and Volcani, B.E. (1978) Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim. Biophys. Acta 528, 89106.
  • 169
    Bentley, R.K. and Holliman, F.G. (1970) Pigments of Pseudomonas species. Part III. The synthesis of dimethylaeruginosin B and aeruginosin B. J. Chem. Soc. (C) 1970, 24472457.
  • 170
    Patai, S. and Rappoport, Z. (Eds.) (1991) The Chemistry of Sulphonic Acids, Esters and their Derivatives. Wiley, Chichester.