• 1
    Enemark, J.H. and Young, C.G. (1993) Bioinorganic chemistry of pterin-containing molybdenum and tungsten enzymes. Adv. Inorg. Chem. 40, 188.
  • 2
    Hille, R. (1994) The reaction mechanism of oxomolybdenum enzymes. Biochim. Biophys. Acta 1184, 143169.
  • 3
    Hille, R. (1996) The mononuclear molybdenum enzymes. Chem. Rev. 96, 27572816.
  • 4
    Wootton, J.C., Nicholson, R.E., Cock, J.M., Walters, D.E., Burke, J.F., Doyle, W.A. and Bray, R.C. (1991) Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties and possible cofactor-binding domains. Biochim. Biophys. Acta 1057, 157185.
  • 5
    Rajagopalan, K.V. (1991) Novel aspects of the biochemistry of the molybdenum cofactor. Adv. Enzym. 64, 215290.
  • 6
    Rajagopalan, K.V. and Johnson, J.L. (1992) The pterin molybdenum cofactors. J. Biol. Chem. 267, 1019910202.
  • 7
    Johnson, J.L., Rajagopalan, K.V., Mukund, S. and Adams, M.W.W. (1993) Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic archaea. J. Biol. Chem. 268, 48484852.
  • 8
    Johnson, M.K., Rees, D.C. and Adams, M.W.W. (1996) Tungstoenzymes. Chem. Rev. 96, 28172839.
  • 9
    Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W.W. and Rees, D.C. (1995) Structure of a hyperthermophilic tungstopterin, aldehyde ferredoxin oxidoreductase. Science 267, 14631469.
  • 10
    Huber, R., Hof, P., Duarte, R.O., Moura, J.J.G., Moura, I., Liu, M.-Y., LeGall, J., Hille, R., Archer, M. and Romão, M.J. (1996) A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc. Natl. Acad. Sci. USA 17, 88468851.
  • 11
    Romão, M.J., Archer, M., Moura, I., LeGall, J., Engh, R., Schneider, M., Hof, P. and Huber, R. (1995) Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from Desulfovibrio gigas. Science 270, 11701176.
  • 12
    Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K. V. and Rees, D.C. (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272, 16151621.
  • 13
    McAlpine, A.S., McEwan, A.G., Shaw, A.L. and Bailey, S. (1997) Molybdenum active centre of DMSO reductase from Rhodobacter capsulatus: crystal structure of the oxidised enzyme at 1.82 Å resolution and the dithionite-reduced enzyme at 2.8 Å resolution. J. Biol. Inorg. Chem. 2, 690701.
  • 14
    Schneider, F., Löwe, J., Huber, R., Schindelin, H., Kisker, C. and Knäblein, J. (1996) Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J. Mol. Biol. 263, 5369.
  • 15
    Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C. and Sun, P.D. (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 13051308.
  • 16
    Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W.A., Garrett, R.M., Rajagopalan, K.V., Enemark, J.H. and Rees, D.C. (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91, 973983.
  • 17
    Kisker, C., Schindelin, H. and Rees, D.C. (1997) Molybdenum-cofactor containing enzymes: structure and mechanism. In: Annual Reviews in Biochemistry (Richardson, C.C., Ed.), pp. 233–267. Annual Reviews, Palo Alto.
  • 18
    Weiner, J.H., Rothery, R.A., Sambasivarao, D. and Trieber, C.A. (1992) Molecular analysis of dimethylsulfoxide reductase: a complex iron–sulfur molybdoenzyme of Escherichia coli. Biochim. Biophys. Acta 1102, 118.
  • 19
    Satoh, T. and Kurihara, F.N. (1987) Purification and properties of dimethylsulfoxide reductase containing a molybdenum cofactor from a photodenitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans. J. Biochem. 102, 191197.
  • 20
    McEwan, A.G., Ferguson, S.J. and Jackson, J.B. (1991) Purification and properties of dimethyl-sulfoxide reductase from Rhodobacter capsulatus– a periplamic molybdoenzyme. Biochem. J. 274, 305307.
  • 21
    McAlpine, A.S., McEwan, A.G. and Bailey, S. (1998) The high resolution crystal structure of DMSO reductase in complex with DMSO. J. Mol. Biol. 275, 613623.
  • 22
    Kraulis, P.J. (1991) MOLSCRIPT – a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946950.
  • 23
    Bacon, D.J. and Anderson, W.F. (1988) A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219220.
  • 24
    Merritt, E.A. and Murphy, M.E.P. (1994) Raster3D Version 2.0 – a program for photorealistic molecular graphics. Acta Cryst. D50, 869–873.
  • 25
    Schulz, G.E. (1992) Binding of nucleotides by proteins. Curr. Opin. Struct. Biol. 2, 6167.
  • 26
    Ludvigsen, S. and Poulsen, F.M. (1992) 3-Dimensional structure in solution of barwin, a protein from barley seed. Biochemistry 31, 87838789.
  • 27
    Davies, G.J., Dodson, G.G., Hubbard, R.E., Tolley, S.P., Dauter, Z., Wilson, K.S., Hjort, C., Mikkelsoen, J.M., Rasmussen, G. and et al. (1993) Structure and function of endoglucanase V. Nature 365, 362364.
  • 28
    George, G.N., Hilton, J. and Rajagopalan, K.V. (1996) X-ray absorption spectroscopy of dimethylsulfoxide reductase from Rhodobacter sphaeroides, J. Am. Chem. Soc. 118, 11131117.
  • 29
    Baugh, P.E., Garner, C.D., Charnock, J.M., Collison, D., Davies, E.S., McAlpine, A.S., Bailey, S., Lane, I., Hanson, G.R. and McEwan, A.G. (1997) X-ray absorption spectroscopy of dimethylsulfoxide reductase from Rhodobacter capsulatus, J. Biol. Inorg. Chem. 2, 634643.
  • 30
    Bennett, B., Benson, N., McEwan, A.G. and Bray, R.C. (1994) Multiple states of the molybdenum centre of dimethylsulphoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. Eur. J. Biochem. 225, 321331.
  • 31
    Schindelin, H., Kisker, C. and Rees, D.C. (1997) The molybdenum-cofactor: a crystallographic perspective. J. Biol. Inorg. Chem. 2, 773781.
  • 32
    George, G.N., Colangelo, C.M., Dong, J., Scott, R.A., Kangulov, S.V., Gladyshev, V.N. and Stadtman, T.C. (1998) X-ray absorption spectroscopy of the molybdenum site of Escherichia coli formate dehydrogenase. J. Am. Chem. Soc. 120, 12671275.
  • 33
    Khangulov, S.V., Gladyshev, V.N., Dismukes, G.C. and Stadtman, T.C. (1998) Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Biochemistry 57, 35183528.
  • 34
    Schink, B. and Pfennig, N. (1992) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. Sp. Nov., a new strictly anaerobic, non-fermenting bacterium. Arch. Microbiol. 133, 195201.
  • 35
    Brune, A. and Schink, B. (1992) Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici– fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157, 417424.
  • 36
    Reichenbecher, W., Brune, A. and Schink, B. (1994) Transhydroxylase of Pelobacter acidigallici– a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol. Biochim. Biophys. Acta 1204, 217224.
  • 37
    Reichenbecher, W., Rüdiger, A., Kroneck, P.M.H. and Schink, B. (1996), One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo–Fe–S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry. Eur. J. Biochem. 237, 406–413.
  • 38
    Yamamoto, I., Wada, N., Ujiiye, T., Tachibana, M., Matsuzaki, M., Kajiwara, H., Watanabe, Y., Hirano, H. and Okubo, A. (1995) Cloning and nucleotide sequence of the gene encoding dimethyl sulfoxide reductase from Rhodobacter sphaeroides f.s. denitrificans, Biosci. Biotechnol. Biochem. 59, 18501855.
  • 39
    Bilous, P.T., Cole, S.T., Anderson, W.F. and Weiner, J.H. (1988) Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethyl sulfoxide reductase of Escherichia coli. Mol. Microbiol. 2, 785795.
  • 40
    Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.-F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton, G. et al. (1995) Whole genome random sequencing and assembly of Haemophilus influenzae. Science 269, 496512.
  • 41
    Shuber, A.P., Orr, E.C., Recny, M.A., Schendel, P.F., May, H.D., Schauer, N.L. and Ferry, J.G. (1986) Cloning, expression and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J. Biol. Chem. 261, 1294212947.
  • 42
    Hoffmann, T., Troub, B., Szabo, A., Hungerer, C. and Jahn, D. (1995) The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system, FEMS Microbiol. Lett. 133, 219225.
  • 43
    Blasco, F., Iobbi, C., Ratouchniak, J., Bonnefoy, V. and Chippaux, M. (1990) Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol. Gen. Genet. 222, 104111.
  • 44
    Kraft, T., Bokranz, M., Klimmek, O., Schroeder, I., Fahrenholz, F., Kojro, E. and Kröger, (1992) Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 206, 503–510.
  • 45
    Plunkett, G., III, Burland, V.D., Daniels, D.L. and Blattner, F.R. (1993) Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 21, 33913398.
  • 46
    Berg, B.L., Li, J., Heider, J. and Stewart, V. (1991) Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J. Biol. Chem. 266, 2238022385.
  • 47
    Lin, J.T., Goldman, B.S. and Stewart, V. (1993) Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al, J. Bacteriol. 175, 23702378.
  • 48
    Siddiqui, R.A., Warnecke-Eberz, U., Hengsberger, A., Schneider, B., Kostka, S. and Friedrich, B. (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J. Bacteriol. 175, 58675876.
  • 49
    Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic. Acids Res. 12, 387395.
  • 50
    Tabor, S. and Richardson, C.C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82, 10741078.
  • 51
    Turner, N.A., Doyle, W.A., Ventom, A.M. and Bray, R.C. (1995) Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase. Eur. J. Biochem. 232, 646657.
  • 52
    Romão, M.J. and Huber, R. (1998) Structure and function of the xanthine-oxidase family of molybdenum enzymes. Struct. Bond. 90, 6995.
  • 53
    Murzin, A.G., Brenner, S.E., Hubbard, T. and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536540.
  • 54
    Garrett, R.M., Bellissimo, D.B. and Rajagopalan, K.V. (1995) Molecular cloning of human liver sulfite oxidase. Biochim. Biophys. Acta 1262, 147149.
  • 55
    Garrett, R.M. and Rajagopalan, K.V. (1994) Molecular cloning of rat-liver sulfite oxidase – expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. J. Biol. Chem. 269, 272276.
  • 56
    Barber, M.J. and Neame, P.J. (1990) A conserved cysteine in molybdenum oxotransferases. J. Biol. Chem. 265, 2091220915.
  • 57
    Toghrol, F. and Southerland, W.M. (1983) Purification of Thiobacillus novellus sulfite oxidase – evidence for the presence of heme and molybdenum. J. Biol. Chem. 258, 67626766.
  • 58
    Johnson, J.L. and Rajagopalan, K.V. (1977) Tryptic cleavage of rat liver sulfite oxidase – isolation and characterization of molybdenum and heme domains. J. Biol. Chem. 252, 20172025.
  • 59
    Nicholas, D.J.D. and A.J. Nason (1954) Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J. Biol. Chem. 207, 353–360.
  • 60
    Solomonson, L., Lorimer, G., Hall, R., Borchers, R. and Bailey, J. (1975) Reduced nicotinamide adenine dinucleotide nitrate reductase of Chlorella vulgaris. J. Biol. Chem. 250, 4120.
  • 61
    Notton, B.A., Graf, L., Hewitt, E.J. and Povey, R.C. (1974) The role of molybdenum in the synthesis of nitrate reductase in cauliflower (Brassica oleracea) and spinach (Spinacea oleracea) Biochim. Biophys. Acta 364, 4558.
  • 62
    Kubo, Y., Ogura, N. and Nakagawa, H. (1988) Limited proteolysis of the nitrate reductase from spinach leaves. J. Biol. Chem. 263, 1968419689.
  • 63
    Lu, G., Lindqvist, Y., Schneider, G., Dwivedi, U. and Campbell, W.H. (1995) Structural studies on corn nitrate reductase – refined structure of the cytochrome b reductase fragment at 2.5 Å, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. J. Mol. Biol. 248, 931948.
  • 64
    George, G.N., Kipke, C.A., Prince, R.C., Sunde, R.A., Enemark, J.H. and Cramer, S.P. (1989) Structure of the active site of sulfite oxidase. X-ray absorption spectroscopy of the Mo(IV), Mo(V), and Mo(VI) oxidation states. Biochemistry 28, 50755080.
  • 65
    Rosner, B. and Schink, B. (1995) Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron–sulfur protein. J. Bacteriol. 177, 57675772.
  • 66
    Kletzin, A. and Adams, M.W.W. (1996) Tungsten in biological systems. FEMS Microbiol. Rev. 18, 563.
  • 67
    Zehnder, A.J.B. and Wuhrmann, K. (1976) Titanium (III)-citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194, 11651166.
  • 68
    Gladyshev, V.N., Boyington, J.C., Khangulov, S.V., Grahame, D.A., Stadtman, T.C. and Sun, P.D. (1996) Characterization of crystalline formate dehydrogenaseH from Escherichia coli. J. Biol. Chem. 271, 80958100.
  • 69
    Cammack, R., Patil, D.S. and Fernandez, V.M. (1985) Electron-spin-resonance spectroscopy of iron–sulfur enzymes. Biochem. Soc. Trans. 13, 14631469.
  • 70
    Yadav, J., Das, S.K. and Sarkar, S. (1997) A functional mimic of the new class of tungstoenzyme, acetylene hydratase. J. Am. Chem. Soc. 119, 43154316.
  • 71
    Gibson, J., Dispensa, M., Harwood, C.S. (1997) 4-Hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-hydroxylases. J. Bacteriol. 179, 634642.
  • 72
    Breese, K. and Fuchs, G. (1997) 4-hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica. Prosthetic groups, electron donor, and genes of a member of the molybdenum–flavin–iron–sulfur proteins. Eur. J. Biochem. 251, 916923.
  • 73
    Canne, C., Stephan, I., Finsterbusch, J., Lingens, F., Kappl, R., Fetzner, S. and Hüttermann, J. (1997) Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase. Biochemistry 36, 97809790.