SEARCH

SEARCH BY CITATION

References

  • 1
    Schönheimer, R. and Rittenberg, D. (1935) Deuterium as an indicator in the study of intermediary metabolism. Science 82, 156157.
  • 2
    Kamen, M.D. (1947) Use of isotopes in biochemical research: Fundamental aspects. Annu. Rev. Biochem. 16, 631654.
  • 3
    Calvin, M., Heidelberger, C., Reid, J.C., Tolbert, B.M. and Yankwich, P.F. (1949) Isotopic Carbon. J. Wiley and Sons, New York, Chapman and Hall, London.
  • 4
    Simon, H. and Floss, H.G. (1967) Anwendung von Isotopen in der Organischen Chemie und Biochemie, Bestimmung der Isotopenverteilung in markierten Verbindungen (Simon, H., Ed.), Volume I, Springer Verlag, Berlin.
  • 5
    Rauschenbach, P., Schmidt, H.L., Simon, H., Tykva, R. and Wenzel, M. (1974) Messung von radioaktiven und stabilen Isotopen (Simon, H., Ed.), Springer Verlag, Berlin.
  • 6
    Eisenreich, W., Strauß, G., Werz, U., Fuchs, G. and Bacher, A. (1993) Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus. Eur. J. Biochem. 215, 619632.
  • 7
    Werner, I., Bacher, A. and Eisenreich, W. (1997) Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi. J. Biol. Chem. 272, 2547425482.
  • 8
    Eichinger, D. (1997) Retroanalytische NMR-Untersuchungen zur Biosynthese der Indolalkaloidvorstufe Loganin und von Anthrachinonglykosiden in höheren Pflanzen. Thesis, Technische Universität, Munich.
  • 9
    Eichinger, D., Eisenreich, W., Zenk, M.H. and Bacher, A. (1998) Biosynthesis of loganin via the 1-deoxy-d-xylulose pathway in a cell culture of Rauwolfia serpentina (submitted for publication).
  • 10
    Eisenreich, W., Menhard, B., Hylands, P.J., Zenk, M.H. and Bacher, A. (1996) Studies on the biosynthesis of taxol: The taxan carbon skeleton is not of mevalonoid origin. Proc. Natl. Acad. Sci. USA 93, 64316436.
  • 11
    Qureshi, N. and Porter, J.W. (1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Biosynthesis of Isoprenoid Compounds (Porter, J.W. and Spurgeon, S.L., Eds.), Vol. 1, pp. 47–94, John Wiley, New York.
  • 12
    Banthorpe, D.V., Charlwood, B.V. and Francis, M.J.O. (1972) The biosynthesis of monoterpenes. Chem. Rev. 72, 115155.
  • 13
    Bach, T.J. (1995) Some aspects of isoprenoid biosynthesis in plants. A review. Lipids 30, 191202.
  • 14
    Bloch, K. (1992) Sterol molecule: structure, biosynthesis and function. Steroids 57, 378382.
  • 15
    Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H. and Bacher, A. (1998) The 1-deoxy-d-xylulose pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5, R221R233.
  • 16
    Rohmer, M., Knani, M., Simonin, P., Sutter, B. and Sahm, H. (1993) Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295, 517524.
  • 17
    Rohmer, M., Seemann, M., Horbach, S., Bringer-Meyer, S. and Sahm, H. (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Am. Chem. Soc. 118, 25645266.
  • 18
    Broers, S.T.J. (1994) Über die frühen Stufen der Biosynthese von Isoprenoiden in Escherichia coli. Thesis 10978, ETH, Zürich.
  • 19
    Schwarz, M.K. (1994) Terpen-Biosynthese in Ginkgo biloba: Eine überraschende Geschichte. Thesis 19051, ETH, Zürich.
  • 20
    White, R.H. (1978) Stable isotope studies on the biosynthesis of the thiazole moiety of thiamin in Escherichia coli. Biochemistry 17, 38333840.
  • 21
    David, S., Estramareix, B., Fischer, J.-C. and Thérisod, M. (1981) 1-Deoxy-d-threo-2-pentulose: The precursor of the five-carbon chain of the thiazole of thiamine. J. Am. Chem. Soc. 103, 73417342.
  • 22
    Himmeldirk, K., Kennedy, I.A., Hill, R.E., Sayer, B.G. and Spenser, I.D. (1996) Biosynthesis of vitamins B1 and B6 in Escherichia coli: Concurrent incorporation of 1-deoxy-D-xylulose into thiamin (B1) and pyridoxal (B6). J. Chem. Soc. Chem. Commun. 1187–1188.
  • 23
    Hill, R.E., Himmeldirk, K., Kennedy, I.A., Panloski, R.M., Sayer, B.G., Wolf, E. and Spenser, I.D. (1996) The biogenetic anatomy of vitamin B6. A13C NMR investigation of the biosynthesis of pyridoxol in Escherichia coli. J. Biol. Chem. 271, 3042630435.
  • 24
    Spenser, I.D. and White, R.L. (1997) Biosynthesis of vitamin B1 (thiamin): An instance of biochemical diversity. Angew. Chem. Int. Ed. Engl. 36, 10321046.
  • 25
    Hill, R.E., Sayer, B.G. and Spenser, I.D. (1989) Biosynthesis of vitamin B6: Incorporation of d-1-deoxy-d-xylulose. J. Am. Chem. Soc. 111, 19161917.
  • 26
    Sprenger, G.A., Schörken, U., Wiegert, T., Grolle, S., deGraaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S. and Sahm, H. (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA 94, 1285712862.
  • 27
    Lois, L.M., Campos, N., Putra, S.R., Danielsen, K., Rohmer, M. and Boronat, A. (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-deoxy-d-xylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA 95, 21052110.
  • 28
    Campos, N., Lois, L.M. and Boronat, A. (1997) Nucleotide sequence of a rice cDNA encoding a transketolase-like protein homologous to the Arabidopsis CLA1 gene product. Plant Physiol. 115, 1289.
  • 29
    Lange, B.M., Wildung, M.R., McCaskill, D. and Croteau, R. (1998) A family of transketolases that direct isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 95, 21002104.
  • 30
    Yokota, A. and Sasajima, K. (1986) Formation of 1-deoxy-ketoses by pyruvate dehydrogenase and acetoin dehydrogenase. Agric. Biol. Chem. 50, 25172524.
  • 31
    Gibson, J., Ludwig, W., Stackebrandt, E. and Woese, C.R. (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobicum and Chloroflexus. Syst. Appl. Microbiol. 6, 152156.
  • 32
    Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 227271.
  • 33
    Oyaizu, W., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J.A. and Woese, C.R. (1987) The green non sulfur bacteria: a deep branching in the eubacterial line of descent. Syst. Appl. Microbiol. 9, 4753.
  • 34
    Rieder, C., Strauß, G., Fuchs, G., Arigoni, D., Bacher, A. and Eisenreich, W. (1998) Biosynthesis of the diterpene verrucosan-2β-ol in the phototrophic eubacterium Chloroflexus aurantiacus. A retrobiosynthetic NMR study. J. Biol. Chem. 273, 1809918108.
  • 35
    Chuck, J.-A. and Barrow, K.D. (1995) The isolation of isoagathenediol: A new tricyclic diterpene from the lipids of Rhodospirillum rubrum. Microbiology 141, 26592663.
  • 36
    Hefter, J., Richnow, H.H., Fischer, U., Trendel, J.M. and Michaelis, W. (1993) (−)-Verrucosan-2β-ol from the phototrophic bacterium Chloroflexus aurantiacus: First report of a verrucosane-type diterpenoid from a prokaryote. J. Gen. Microbiol. 139, 27572761.
  • 37
    Godtfredsen, S., Obrecht, J.P. and Arigoni, D. (1977) The cyclization of linalool to α-terpineol. Stereochemical course of the reaction. Chimia 31, 6263.
  • 38
    Cane, D.E. (1985) Isoprenoid biosynthesis. Stereochemistry of the cyclization of alkylic pyrophosphates. Acc. Chem. Res. 18, 220226.
  • 39
    Canonica, L., Fiecchi, A., Galli-Kienle, M., Ranzi, B. M. and Scala, A. (1967) The stereochemical course of the 1,5-shift of hydrogen in the biosynthesis of ophiobolus. Tetrahedron Lett. 8, 46574659.
  • 40
    Arigoni, D. (1968) Some studies in the biosynthesis of terpenes and related compounds. Pure Appl. Chem. 17, 331348.
  • 41
    Dauben, W.G. and Friedrich, L.E. (1967) Cyclopropylcarbinyl rearrangements in the thujopsene series. Tetrahedron Lett. 8, 17351740.
  • 42
    Eisenreich, W., Rieder, C., Grammes, C., Heßler, G., Adam, K.-P., Becker, H., Arigoni, D., and Bacher, A. (1998) Mechanisms of neoverrucosane formation in the liverwort Fossombronia alaskana. A retrobiosynthetic NMR study (manuscript in preparation).
  • 43
    Brechbühler-Bader, S., Coscia, C.J., Loew, P., v. Sczepanski, C. and Arigoni, D. (1968) The chemistry and biosynthesis of loganin. J. Chem. Soc. Chem. Commun. 136–137.
  • 44
    de Rosa, M., Gambacorta, A. and Nicolaus, B. (1980) Regularity of isoprenoid biosynthesis in the ether lipids of archaebacteria. Phytochemistry 19, 791793.
  • 45
    Arigoni, D., Sagner, S., Latzel, C., Eisenreich, W., Bacher, A. and Zenk, M.H. (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94, 1060010605.
  • 46
    Goodwin, T.W. (1965) Biochemistry of chloroplasts. In: Chemistry and Biochemistry of Plant Pigments (Goodwin, T.W., Ed.), pp. 143–154. Academic Press, London.
  • 47
    Loomis, W.D. (1967) Biosynthesis and metabolism of monoterpenes. In: Terpenoids in Plants (Pridham, J.B., Ed.), pp. 59–82. Academic Press, London.
  • 48
    Disch, A., Hemmerlin, A., Bach, T.J. and Rohmer, M. (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem. J. 331, 615621.
  • 49
    Martin, W. and Müller, M. (1998) The hydrogen hypothesis for the first eukaryote. Nature 392, 3741.
  • 50
    Lichtenthaler, H.K. (1998) Der 1-Desoxy-d-xylulose-Biosyntheseweg pflanzlicher Isoprenoide. Biospektrum 4, 4952.
  • 51
    Kramer, S.P., Johnson, J.L., Ribeiro, A.A., Millington, D.S. and Rajagopalan, K.V. (1987) The structure of the molybdenum cofactor. Characterization of di(carboxamidomethyl)-molybdopterin from sulfite oxidase and xanthine oxidase. J. Biol. Chem. 262, 1635716363.
  • 52
    Hille, R. (1996) The mononuclear molybdenum enzymes. Chem. Rev. 96, 27572816.
  • 53
    Romão, M.J., Archer, M., Moura, I., Moura, J.J.G., LeGall, J., Engh, R., Schneider, M., Hof, P. and Huber, R. (1995) Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Science 270, 11701176.
  • 54
    Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K.V. and Rees, D.C. (1996) Crystal structure of DMSO reductase: Redox-linked changes in molybdopterin coordination. Science 272, 16151621.
  • 55
    Boyington, J.C., Gladyshev, V.N., Khangulov, S.K., Stadtman, T.C. and Sun, P.D. (1997) Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 13051308.
  • 56
    Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W.W. and Rees, D.C. (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267, 14631469.
  • 57
    Rieder, C., Eisenreich, W., O'Brien, J., Richter, G., Götze, E., Boyle, P., Blanchard, S., Bacher, A. and Simon, H. (1998) Rearrangement reactions in the biosynthesis of molybdopterin. An NMR study with multiply 13C/15N labelled precursors. Eur. J. Biochem. 255, 2436.
  • 58
    Green, J.M., Nichols, B.P. and Matthews, R.G. (1996) Folate biosynthesis, reduction and polyglutamylation. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), 2nd edn., Vol. 1, pp. 665–673. American Society for Microbiology, Washington, DC.
  • 59
    Nichol, C.A., Lee, C.L., Edelstein, M.P., Chao, J.Y. and Duchs, D.S. (1983) Biosynthesis of tetrahydrobiopterin by de novo and salvage pathways in adrenal medulla extracts, mammalian cell cultures and rat brain in vivo. Proc. Natl. Acad. Sci. USA 80, 15461550.
  • 60
    Weygand, F., Simon, H., Dahms, G., Waldschmidt, M., Schliep, H.J. and Wacker, H. (1961) Über die Biogenese des Leucopterins. Angew. Chem. 73, 402407.
  • 61
    Burg, W.A. and Brown, G.M. (1968) The biosynthesis of folic acid. VIII. Purification and properties of the enzyme that catalyzes the production of formate from carbon atom 8 of guanosine triphosphate. J. Biol. Chem. 243, 23492358.
  • 62
    Shiota, T., Palumbo, M.P. and Tsai, L. (1967) A chemically prepared formamidopyrimidine derivative of guanosine triphosphate as a possible intermediate in pteridine biosynthesis. J. Biol. Chem. 242, 19611969.
  • 63
    Shiota, T., Baugh, C.M. and Myrick, J. (1969) The assignment of structure of the formamidopyrimidine nucleoside triphosphate precursor of pteridines. Biochim. Biophys. Acta 192, 205210.
  • 64
    Nar, H., Huber, R., Auerbach, G., Fischer, M., Hösl, C., Ritz, H., Bracher, A., Meining, W., Eberhardt, S. and Bacher, A. (1995) Active site topology and reaction mechanism of GTP cyclohydrolase I. Proc. Natl. Acad. Sci. USA 92, 1212012125.
  • 65
    Bracher, A., Eisenreich, W., Schramek, N., Ritz, H., Götze, E., Hermann, A. and Bacher, A. (1998) Biosynthesis of pteridines. NMR studies on the reaction mechanism of GTP cyclohydrolase I, pyruvoyltetrahydropterin synthase and sepiapterin reductase. J. Biol. Chem. 273, 2813228141.
  • 66
    Irby, R.B. and Adair, W.L. Jr. (1994) Intermediates in the folic acid biosynthetic pathway are incorporated into molybdopterin in the yeast, Pichia canadensis. J. Biol. Chem. 269, 2398123987.
  • 67
    Wuebbens, M.M. and Rajagopalan, K.V. (1995) Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J. Biol. Chem. 270, 10821087.
  • 68
    Bacher, A., Eberhardt, S. and Richter, G. (1996) Biosynthesis of riboflavin. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), 2nd edn., Vol. 1, pp. 657–664. American Society for Microbiology, Washington, DC.
  • 69
    Bacher, A., LeVan, Q., Keller, P.J. and Floss, H.G. (1983) Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring. J. Biol. Chem. 258, 1343113437.
  • 70
    Bacher, A., LeVan, Q., Keller, P.J. and Floss, H.G. (1985) Biosynthesis of riboflavin. Incorporation of multiply 13C-labeled precursors into the xylene ring. J. Am. Chem. Soc. 107, 63806385.
  • 71
    LeVan, Q., Keller, P.J., Bown, D.H., Floss, H.G. and Bacher, A. (1985) Biosynthesis of riboflavin in Bacillus subtilis: Origin of the four-carbon moiety. J. Bacteriol. 162, 12801284.
  • 72
    Floss, H.G., LeVan, Q., Keller, P.J. and Bacher, A. (1983) Biosynthesis of riboflavin. An unusual rearrangement in the formation of 6,7-dimethyl-8-ribityllumazine. J. Am. Chem. Soc. 105, 24932494.
  • 73
    Volk, R. and Bacher, A. (1991) Biosynthesis of riboflavin. Studies on the mechanism of l-3,4-dihydroxy-2-butanone 4-phosphate synthase. J. Biol. Chem. 266, 2061020618.
  • 74
    Weber, S., Eisenreich, W., Bacher, A. and Hartmann, T. (1998) Pyrrolizidine alkaloids of the lycopsamine type: Biosynthesis of trachelanthic acid. Phytochemistry (in press).
  • 75
    Fuchs, G. (1989) Alternative pathways of autotrophic CO2 fixation. In: Autotrophic Bacteria (Schlegel, H.G. and Bowien, B., Eds.), pp. 365–382. Science Tech Publishers, Madison, WI.
  • 76
    Holo, H. and Sirevåg, R. (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch. Microbiol. 145, 173180.
  • 77
    Holo, H. and Grace, D. (1987) Polyglucose synthesis in Chloroflexus aurantiacus studied by 13C-NMR. Arch. Microbiol. 148, 292297.
  • 78
    Holo, H. (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch. Microbiol. 151, 252256.
  • 79
    Strauß, G., Eisenreich, W., Bacher, A. and Fuchs, G. (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur. J. Biochem. 205, 853866.
  • 80
    Strauß, G. and Fuchs, G. (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur. J. Biochem. 215, 633643.
  • 81
    Ishii, M., Miyake, T., Satoh, T., Sagiyama, H., Oshima, Y., Kodama, T. and Igarashi, Y. (1997) Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch. Microbiol. 166, 368371.
  • 82
    Schäfer, S., Götz, M., Eisenreich, W., Bacher, A. and Fuchs, G. (1989) 13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus. Eur. J. Biochem. 184, 151156.
  • 83
    Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T. and Wüthrich, K. (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature Biotechnol. 15, 448452.
  • 84
    Szyperski, T. (1995) Biosynthetically direct fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433448.
  • 85
    Ugurbil, K., Brown, T.R., DenHollander, J.A., Glynn, P. and Shulman, R.G. (1978) High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 75, 37423746.
  • 86
    Szyperski, T., Bailey, J.E. and Wüthrich, K. (1996) Detecting and dissecting metabolic fluxes using biosynthetic fractional C-13 labeling and two-dimensional NMR spectroscopy. Trends Biotechnol. 14, 453459.
  • 87
    Sonntag, K., Schwinde, J., de Graaf, A.A., Marx, A., Eikmanns, B.J., Wiechert, W. and Sahm, H. (1995) C-13 NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Appl. Microbiol. Biotechnol. 44, 489495.
  • 88
    Schmidt, K., Marx, A., de Graaf, A.A., Wiechert, W., Sahm, H., Nielsen, J. and Villadsen, J. (1998) C-13 tracer experiments and metabolite balancing for metabolic flux analysis: Comparing two approaches. Biotechnol. Bioeng. 58, 254257.
  • 89
    Marx, A., de Graaf, A.A., Wiechert, W., Eggeling, L. and Sahm, H. (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol. Bioeng. 49, 111129.
  • 90
    Shiomi, K., Iinuma, H., Naganawa, H., Isshiki, K., Takeuchi, T. and Umezawa, H. (1987) Biosynthesis of napyradiomycins. J. Antibiot. 40, 17401745.
  • 91
    Duvold, T., Bravo, J.M., Pale-Grosdemange, C. and Rohmer, M. (1997) Biosynthesis of 2-C-methyl-d-erythritol, a putative C5 intermediate in the mevalonate independent pathway for isoprenoid biosynthesis. Tetrahedron Lett. 38, 47694772.
  • 92
    Duvold, T., Cali, P., Bravo, J.M. and Rohmer, M. (1997) Incorporation of 2-C-methyl-d-erythritol, a putative isoprenoid precursor in the mevalonate-independent pathway, into ubiquinone and menaquinone of Escherichia coli. Tetrahedron Lett. 38, 61816184.
  • 93
    Zhou, D. and White, H. (1991) Early steps of isoprenoid biosynthesis in Escherichia coli. Biochem. J. 273, 627634.
  • 94
    Putra, S.R., Lois, L.M., Campos, N., Boronat, A. and Rohmer, M. (1998) Incorporation of [2,3-13C2]- and [2,4-13C2]-d-1-deoxyxylulose into ubiquinone of Escherichia coli via the mevalonate-independent pathway for isoprenoid biosynthesis. Tetrahedron Lett. 39, 2326.
  • 95
    Britton, G., Goodwin, T.W., Lockley, W.J.S., Mundy, A.P., Patel, N.J. and Englert, G. (1979) Stereochemistry of cyclization in carotenoid biosynthesis: Use of 13C-labelling to elucidate the stereochemical behaviour of the C-1 methyl substituents during zeaxanthin biosynthesis in a flavobacterium. J. Chem. Soc. Chem. Commun. 27–28.
  • 96
    Moldoveanu, M. and Kates, M. (1988) Biosynthetic studies of the polar lipids of Halobacterium cutirubrum. Formation of isoprenyl ether intermediates. Biochim. Biophys. Acta 960, 164182.
  • 97
    Isshiki, K., Tamamura, T., Sawa, T., Naganawa, H., Takeuchi, T. and Umezawa, H. (1987) Biosynthetic studies of terpentecin. J. Antibiot. 40, 16341635.
  • 98
    Flesch, G. and Rohmer, M. (1988) Prokaryontic hopanoids: The biosynthesis of the bacteriohopan skeleton. Eur. J. Biochem. 175, 405411.
  • 99
    Funayama, S., Ishibashi, M., Komiyama, K. and Omura, S. (1990) Biosynthesis of furaquinocins A and B. J. Org. Chem. 55, 11321133.
  • 100
    Shin-ya, K., Furihata, K., Hayakawa, Y. and Seto, H. (1990) Biosynthetic studies of naphterpin, a terpenoid metabolite of Streptomyces. Tetrahedron Lett. 31, 60256026.
  • 101
    Seto, H., Watanabe, H. and Furihata, K. (1996) Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenyl diphosphate in Streptomyces aeriouvifer. Tetrahedron Lett. 37, 79797982.
  • 102
    Li, S.-M., Hennig, S. and Heide, L. (1998) Biosynthesis of the dimethylallyl moiety of novobiocin via a non-mevalonate pathway. Tetrahedron Lett. 39, 27172720.
  • 103
    Cane, D.E., Rossi, T., Tillman, A.M. and Pachlatko, J.P. (1981) Stereochemical studies of isoprenoid biosynthesis. Biosynthesis of pentalenolactone from [U-13C6]glucose and [6-2H2]glucose. J. Am. Chem. Soc. 103, 18381843.
  • 104
    Schwender, J., Zeidler, J., Gröner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F.W. and Lichtenthaler, H.K. (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett. 414, 129134.
  • 105
    Thiel, R., Adam, K.P., Zapp, J. and Becker, H. (1997) Isopentenyl diphosphate biosynthesis in liverworts. Pharm. Pharmacol. Lett. 7, 103105.
  • 106
    Lichtenthaler, H.K., Schwender, J., Disch, A. and Rohmer, M. (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 400, 271274.
  • 107
    Nabeta, K., Ishikawa, T. and Okuyama, H. (1995) Sesqui- and di-terpene biosynthesis from 13C labelled acetate and mevalonate in cultured cells of Heteroscyphus planus. J. Chem. Soc. Perkin Trans. 1, 3111.
  • 108
    Nabeta, K., Kawae, T., Saitoh, T. and Kikuchi, T. (1997) Synthesis of chlorophyll a and β-carotene from 2H and 13C-labelled mevalonates and 13C-labelled glycine in cultured cells of liverworts, Heteroscyphus planus and Lophocolea heterophylla. J. Chem. Soc. Perkin Trans. 1, 261267.
  • 109
    Nabeta, K., Saitoh, T., Adachi, K. and Komuro, K. (1998) Biosynthesis of phytyl side-chain of chlorophyll a: apparent reutilization of carbon dioxide evolved during acetate assimilation in biosynthesis of chlorplastidic isoprenoid. J. Chem. Soc. Chem. Commun. 671–672.
  • 110
    Sagner, S., Eisenreich, W., Fellermeier, M., Latzel, C., Bacher, A. and Zenk, M.H. (1998) Biosynthesis of 2-C-methyl-d-erythritol in plants by rearrangement of the terpenoid precursor, 1-deoxy-d-xylulose 5-phosphate. Tetrahedron Lett. 39, 20912094.
  • 111
    Sagner, S., Latzel, C., Eisenreich, W., Bacher, A. and Zenk, M.H. (1998) Differential incorporation of 1-deoxy-d-xylulose into monoterpenes and carotenoids in higher plants. J. Chem. Soc. Chem. Commun. 221–222.
  • 112
    Li, S.-M., Hennig, S. and Heide, L. (1998) Shikonin: A geranyl diphosphate-derived plant hemiterpenoid formed via the mevalonate pathway. Tetrahedron Lett. 39, 27212724.
  • 113
    Knöss, W., Reuter, B. and Zapp, J. (1997) Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway. Biochem. J. 326, 449454.
  • 114
    Eisenreich, W., Sagner, S., Zenk, M.H. and Bacher, A. (1997) Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Lett. 38, 38893892.
  • 115
    Hano, Y., Ayukawa, A., Nomura, T. and Ueda, S. (1994) A chimeric hemiterpene biosynthesis in Morus alba cell cultures. Naturwissenschaften 81, 260262.
  • 116
    Eichinger, D. (1993) Isolierung des Monoterpens Loganin aus R. serpentina. Diplomarbeit, Technische Universität, Munich.
  • 117
    Cartayrade, A., Schwarz, M., Jaun, B. and Arigoni, D. (1994) Abstract P1, 2nd Symposium of the European Network on Plant terpenoids, Strasbourg/Bischenberg, 23–27 January 1994.
  • 118
    Schwender, J., Seemann, M., Lichtenthaler, H.K. and Rohmer, M. (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde-3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J. 316, 7380.
  • 119
    Hasona, A., Ray, R.M. and Shanmugam, K.T. (1998) Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. J. Bacteriol. 180, 14661472.
  • 120
    Rajagopalan, K.V. (1996) Biosynthesis of the molybdenum cofactor, in Escherichia coli and Salmonella: Cellular and Molecular Biology (Neidhardt, F.C., Ed.), 2nd edn., Vol. 1, pp. 674–679. American Society for Microbiology, Washington, DC.