• [1]
    Klug, G. (1991) Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen. Proc. Natl. Acad. Sci. USA 88, 17651769.
  • [2]
    Goldenberg, D., Azar, I., Oppenheim, A.B. (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol. Microbiol. 19, 241248.
  • [3]
    Sato, N., Nakamura, A. (1998) Involvement of the 5′-untranslated region in cold-regulated expression of the rbpA1 gene in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Res. 26, 21922199.
  • [4]
    Kuzj, A.E., Medberry, P.S., Schottel, J.L. (1998) Stationary phase, amino acid limitation and recovery from stationary phase modulate the stability and translation of chloramphenicol acetyltransferase mRNA and total mRNA in Escherichia coli. Microbiology 144, 739750.
  • [5]
    Condon, C., Putzer, H., Grunberg-Manago, M. (1996) Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93, 69926997.
  • [6]
    Albertson, N.H., Nystrom, T. (1994) Effects of starvation for exogenous carbon on functional mRNA stability and rate of peptide chain elongation in Escherichia coli. FEMS Microbiol. Lett. 117, 181187.
  • [7]
    Kahn, D., Hawkins, M., Eady, R.R. (1982) Metabolic control of Klebsiella pneumoniae mRNA degradation by the availability of fixed nitrogen. J. Gen. Microbiol. 128, 30113018.
  • [8]
    Spicher, A., Guicherit, O.M., Duret, L., Aslanian, A., Sanjines, E.M., Denko, N.C., Giaccia, A.J., Blau, H.M. (1998) Highly conserved RNA sequences that are sensors of environmental stress. Mol. Cell Biol. 18, 73717382.
  • [9]
    McCarthy, J.E., Gualerzi, C. (1990) Translational control of prokaryotic gene expression. Trends Genet. 6, 7885.
  • [10]
    McCarthy, J.E. (1990) Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli. Mol. Microbiol. 4, 12331240.
  • [11]
    Klug, G. (1993) The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol. Microbiol. 9, 17.
  • [12]
    Newbury, S.F., Smith, N.H., Higgins, C.F. (1987) Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51, 11311143.
  • [13]
    Stern, M.J., Prossnitz, E., Ames, G.F. (1988) Role of the intercistronic region in post-transcriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences. Mol. Microbiol. 2, 141152.
  • [14]
    Cam, K., Rome, G., Krisch, H.M., Bouche, J.P. (1996) RNase E processing of essential cell division genes mRNA in Escherichia coli. Nucleic Acids Res. 24, 30653070.
  • [15]
    Schirmer, F., Hillen, W. (1998) The Acinetobacter calcoaceticus NCIB8250 mop operon mRNA is differentially degraded, resulting in a higher level of the 3′ CatA-encoding segment than of the 5′ phenolhydroxylase-encoding portion. Mol. Gen. Genet. 257, 330337.
  • [16]
    Oelmuller, U., Schlegel, H.G., Friedrich, C.G. (1990) Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases. J. Bacteriol. 172, 70577064.
  • [17]
    Nierlich, D.P., Murakawa, G.J. (1996) The decay of bacterial messenger RNA. Prog. Nucleic Acid Res. Mol. Biol. 52, 153216.
  • [18]
    Belasco, J.G. and Brawerman, G. (Eds.) (1993) Control of Messenger RNA Stability. Academic Press, San Diego, CA.
  • [19]
    Arraiano, C.M., Yancey, S.D., Kushner, S.R. (1988) Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J. Bacteriol. 170, 46254633.
  • [20]
    Hartz, D., McPheeters, D.S., Green, L., Gold, L. (1991) Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J. Mol. Biol. 218, 99105.
  • [21]
    Bouvet, P., Belasco, J.G. (1992) Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360, 488491.
  • [22]
    Lin-Chao, S., Cohen, S.N. (1991) The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell 65, 12331242.
  • [23]
    Emory, S.A., Bouvet, P., Belasco, J.G. (1992) A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 6, 135148.
  • [24]
    Arnold, T.E., Yu, J., Belasco, J.G. (1998) mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA 4, 319330.
  • [25]
    Belasco, J.G., Nilsson, G., von Gabain, A., Cohen, S.N. (1986) The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell 46, 245251.
  • [26]
    Hansen, M.J., Chen, L.H., Fejzo, M.L., Belasco, J.G. (1994) The ompA 5′ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli. Mol. Microbiol. 12, 707716.
  • [27]
    Nilsson, G., Belasco, J.G., Cohen, S.N., von Gabain, A. (1987) Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc. Natl. Acad. Sci. USA 84, 48904894.
  • [28]
    Heck, C., Rothfuchs, R., Jager, A., Rauhut, R., Klug, G. (1996) Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Mol. Microbiol. 20, 11651178.
  • [29]
    Matsunaga, J., Simons, E.L., Simons, R.W. (1996) RNase III autoregulation: structure and function of rncO, the posttranscriptional ‘operator’. RNA 2, 12281240.
  • [30]
    Mackie, G.A. (1998) Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395, 720723.
  • [31]
    Rapaport, L.R., Mackie, G.A. (1994) Influence of translational efficiency on the stability of the mRNA for ribosomal protein S20 in Escherichia coli. J. Bacteriol. 176, 992998.
  • [32]
    Mackie, G.A., Genereaux, J.L., Masterman, S.K. (1997) Modulation of the activity of RNase E in vitro by RNA sequences and secondary structures 5′ to cleavage sites. J. Biol. Chem. 272, 609616.
  • [33]
    Xu, F., Cohen, S.N. (1995) RNA degradation in Escherichia coli regulated by 3′ adenylation and 5′ phosphorylation. Nature 374, 180183.
  • [34]
    Joyce, S.A., Dreyfus, M. (1998) In the absence of translation, RNase E can bypass 5′ mRNA stabilizers in Escherichia coli. J. Mol. Biol. 282, 241254.
  • [35]
    Sandler, P., Weisblum, B. (1989) Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5′-to-3′ nucleolytic cleavage of the ermA transcript. J. Bacteriol. 171, 66806688.
  • [36]
    Cohen, S.N., McDowall, K.J. (1997) RNase E: still a wonderfully mysterious enzyme. Mol. Microbiol. 23, 10991106.
  • [37]
    Jain, C., Belasco, J.G. (1995) RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev. 9, 8496.
  • [38]
    Casaregola, S., Jacq, A., Laoudj, D., McGurk, G., Margarson, S., Tempete, M., Norris, V., Holland, I.B. (1992) Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. J. Mol. Biol. 228, 3040.
  • [39]
    Taraseviciene, L., Bjork, G.R., Uhlin, B.E. (1995) Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J. Biol. Chem. 270, 2639126398.
  • [40]
    McDowall, K.J., Cohen, S.N. (1996) The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J. Mol. Biol. 255, 349355.
  • [41]
    Huang, H., Liao, J., Cohen, S.N. (1998) Poly(A)- and poly(U)-specific RNA 3′ tail shortening by E. coli ribonuclease E. Nature 391, 99102.
  • [42]
    Claverie-Martin, F., Diaz-Torres, M.R., Yancey, S.D., Kushner, S.R. (1991) Analysis of the altered mRNA stability (ams) gene from Escherichia coli. Nucleotide sequence, transcriptional analysis, and homology of its product to MRP3, a mitochondrial ribosomal protein from Neurospora crassa. J. Biol. Chem. 266, 28432851.
  • [43]
    Mackie, G.A. (1992) Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. J. Biol. Chem. 267, 10541061.
  • [44]
    Ehretsmann, C.P., Carpousis, A.J., Krisch, H.M. (1992) Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 149159.
  • [45]
    Cormack, R.S., Mackie, G.A. (1992) Structural requirements for the processing of Escherichia coli 5S ribosomal RNA by RNase E in vitro. J. Mol. Biol. 228, 10781090.
  • [46]
    Mackie, G.A., Genereaux, J.L. (1993) The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J. Mol. Biol. 234, 9981012.
  • [47]
    Fritsch, J., Rothfuchs, R., Rauhut, R., Klug, G. (1995) Identification of an mRNA element promoting rate-limiting cleavage of the polycistronic puf mRNA in Rhodobacter capsulatus by an enzyme similar to RNase E. Mol. Microbiol. 15, 10171029.
  • [48]
    McDowall, K.J., Lin-Chao, S., Cohen, S.N. (1994) A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J. Biol. Chem. 269, 1079010796.
  • [49]
    McDowall, K.J., Kaberdin, V.R., Wu, S.W., Cohen, S.N., Lin-Chao, S. (1995) Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature 374, 287290.
  • [50]
    Arraiano, C.M., Cruz, A.A., Kushner, S.R. (1997) Analysis of the in vivo decay of the Escherichia coli dicistronic pyrF-orfF transcript: evidence for multiple degradation pathways. J. Mol. Biol. 268, 261272.
  • [51]
    McDowall, K.J., Hernandez, R.G., Lin-Chao, S., Cohen, S.N. (1993) The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J. Bacteriol. 175, 42454249.
  • [52]
    Wachi, M., Umitsuki, G., Nagai, K. (1997) Functional relationship between Escherichia coli RNase E and the CafA protein. Mol. Gen. Genet. 253, 515519.
  • [53]
    Bycroft, M., Hubbard, T.J., Proctor, M., Freund, S.M., Murzin, A.G. (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88, 235242.
  • [54]
    Graumann, P.L., Marahiel, M.A. (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23, 286290.
  • [55]
    Carpousis, A.J., Van Houwe, G., Ehretsmann, C., Krisch, H.M. (1994) Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76, 889900.
  • [56]
    Alberts, B. (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291294.
  • [57]
    Py, B., Causton, H., Mudd, E.A., Higgins, C.F. (1994) A protein complex mediating mRNA degradation in Escherichia coli. Mol. Microbiol. 14, 717729.
  • [58]
    Causton, H., Py, B., McLaren, R.S., Higgins, C.F. (1994) mRNA degradation in Escherichia coli: a novel factor which impedes the exoribonucleolytic activity of PNPase at stem-loop structures. Mol. Microbiol. 14, 731741.
  • [59]
    Mitra, S., Hue, K., Bechhofer, D.H. (1996) In vitro processing activity of Bacillus subtilis polynucleotide phosphorylase. Mol. Microbiol. 19, 329342.
  • [60]
    McLaren, R.S., Newbury, S.F., Dance, G.S., Causton, H.C., Higgins, C.F. (1991) mRNA degradation by processive 3′-5′ exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J. Mol. Biol. 221, 8195.
  • [61]
    Py, B., Higgins, C.F., Krisch, H.M., Carpousis, A.J. (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381, 169172.
  • [62]
    Vanzo, N.F., Li, Y.S., Py, B., Blum, E., Higgins, C.F., Raynal, L.C., Krisch, H.M., Carpousis, A.J. (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev. 12, 27702781.
  • [63]
    Regnier, P., Grunberg-Manago, M., Portier, C. (1987) Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J. Biol. Chem. 262, 6368.
  • [64]
    Higgins, C.F., Causton, H.C., Dance, G.S.C. and Mudd, E.A. (1993) The role of the 3′ end in mRNA stability and decay. In: Control of Messenger RNA Stability (Belasco, J.G. and Brawerman, G., Eds.), pp. 13–52. Academic Press, San Diego, CA.
  • [65]
    Deutscher, M.P., Reuven, N.B. (1991) Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88, 32773280.
  • [66]
    Zilhao, R., Cairrao, F., Regnier, P., Arraiano, C.M. (1996) PNPase modulates RNase II expression in Escherichia coli: implications for mRNA decay and cell metabolism. Mol. Microbiol. 20, 10331042.
  • [67]
    Donovan, W.P., Kushner, S.R. (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 83, 120124.
  • [68]
    Wang, W., Bechhofer, D.H. (1996) Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain. J. Bacteriol. 178, 23752382.
  • [69]
    Blum, E., Py, B., Carpousis, A.J., Higgins, C.F. (1997) Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol. Microbiol. 26, 387398.
  • [70]
    Kornberg, A. (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491496.
  • [71]
    Tzeng, C.M., Kornberg, A. (1998) Polyphosphate kinase is highly conserved in many bacterial pathogens. Mol. Microbiol. 29, 381382.
  • [72]
    Ybarra, J., Horowitz, P.M. (1996) Nucleotides reveal polynucleotide phosphorylase activity from conventionally purified GroEL. J. Biol. Chem. 271, 2506325066.
  • [73]
    Miczak, A., Kaberdin, V.R., Wei, C.L., Lin-Chao, S. (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc. Natl. Acad. Sci. USA 93, 38653869.
  • [74]
    Nicholson, A.W. (1996) Structure, reactivity, and biology of double-stranded RNA. Prog. Nucleic Acid Res. Mol. Biol. 52, 165.
  • [75]
    Luking, A., Stahl, U., Schmidt, U. (1998) The protein family of RNA helicases. Crit. Rev. Biochem. Mol. Biol. 33, 259296.
  • [76]
    Bird, L.E., Subramanya, H.S., Wigley, D.B. (1998) Helicases: a unifying structural theme. Curr. Opin. Struct. Biol. 8, 1418.
  • [77]
    Schmid, S.R., Linder, P. (1992) D-E-A-D protein family of putative RNA helicases. Mol. Microbiol. 6, 283291.
  • [78]
    Anderson, J.S., Parker, R. (1996) RNA turnover: the helicase story unwinds. Curr. Biol. 6, 780782.
  • [79]
    Kido, M., Yamanaka, K., Mitani, T., Niki, H., Ogura, T., Hiraga, S. (1996) RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. J. Bacteriol. 178, 39173925.
  • [80]
    Kaberdin, V.R., Miczak, A., Jakobsen, J.S., Lin-Chao, S., McDowall, K.J., von Gabain, A. (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc. Natl. Acad. Sci. USA 95, 1163711642.
  • [81]
    Wang, M., Cohen, S.N. (1994) ard-1: a human gene that reverses the effects of temperature-sensitive and deletion mutations in the Escherichia coli rne gene and encodes an activity producing RNase E-like cleavages. Proc. Natl. Acad. Sci. USA 91, 1059110595.
  • [82]
    Claverie-Martin, F., Wang, M., Cohen, S.N. (1997) ARD-1 cDNA from human cells encodes a site-specific single-strand endoribonuclease that functionally resembles Escherichia coli RNase E. J. Biol. Chem. 272, 1382313828.
  • [83]
    Lisitsky, I., Kotler, A., Schuster, G. (1997) The mechanism of preferential degradation of polyadenylated RNA in the chloroplast. The exoribonuclease 100RNP/polynucleotide phosphorylase displays high binding affinity for poly(A) sequence. J. Biol. Chem. 272, 1764817653.
  • [84]
    Hayes, R., Kudla, J., Schuster, G., Gabay, L., Maliga, P., Gruissem, W. (1996) Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 15, 11321141.
  • [85]
    Min, J., Heuertz, R.M., Zassenhaus, H.P. (1993) Isolation and characterization of an NTP-dependent 3′-exoribonuclease from mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 268, 73507357.
  • [86]
    Margossian, S.P., Li, H., Zassenhaus, H.P., Butow, R.A. (1996) The DExH box protein Suv3p is a component of a yeast mitochondrial 3′- to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84, 199209.
  • [87]
    Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., Tollervey, D. (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′[RIGHTWARDS ARROW]5′ exoribonucleases. Cell 91, 457466.
  • [88]
    de la Cruz, J., Kressler, D., Tollervey, D., Linder, P. (1998) Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J. 17, 11281140.
  • [89]
    Anderson, J.S.J., Parker, R.P. (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 14971506.
  • [90]
    Decker, C.J. (1998) The exosome: a versatile RNA processing machine. Curr. Biol. 8, R238240.
  • [91]
    Bessarab, D.A., Kaberdin, V.R., Wei, C.L., Liou, G.G., Lin-Chao, S. (1998) RNA components of Escherichia coli degradosome: evidence for rRNA decay. Proc. Natl. Acad. Sci. USA 95, 31573161.
  • [92]
    Stern, M.J., Ames, G.F., Smith, N.H., Robinson, E.C., Higgins, C.F. (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37, 10151026.
  • [93]
    Klug, G., Adams, C.W., Belasco, J., Doerge, B., Cohen, S.N. (1987) Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of the Rhodobacter capsulatus puf operon. EMBO J. 6, 35153520.
  • [94]
    Mackie, G.A. (1987) Posttranscriptional regulation of ribosomal protein S20 and stability of the S20 mRNA species. J. Bacteriol. 169, 26972701.
  • [95]
    Chen, C.Y., Beatty, J.T., Cohen, S.N., Belasco, J.G. (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell 52, 609619.
  • [96]
    Washio, T., Sasayama, J., Tomita, M. (1998) Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res. 26, 54565463.
  • [97]
    Sarkar, N. (1997) Polyadenylation of mRNA in prokaryotes. Annu. Rev. Biochem. 66, 173197.
  • [98]
    O'Hara, E.B., Chekanova, J.A., Ingle, C.A., Kushner, Z.R., Peters, E., Kushner, S.R. (1995) Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 18071811.
  • [99]
    Li, Z., Pandit, S., Deutscher, M.P. (1998) Polyadenylation of stable RNA precursors in vivo. Proc. Natl. Acad. Sci. USA 95, 1215812162.
  • [100]
    Korner, C.G., Wahle, E. (1997) Poly(A) tail shortening by a mammalian poly(A)-specific 3′- exoribonuclease. J. Biol. Chem. 272, 1044810456.
  • [101]
    Cao, G.J., Sarkar, N. (1992) Identification of the gene for an Escherichia coli poly(A) polymerase. Proc. Natl. Acad. Sci. USA 89, 1038010384.
  • [102]
    Kalapos, M.P., Cao, G.J., Kushner, S.R., Sarkar, N. (1994) Identification of a second poly(A) polymerase in Escherichia coli. Biochem. Biophys. Res. Commun. 198, 459465.
  • [103]
    Sarkar, B., Cao, G.J., Sarkar, N. (1997) Identification of two poly(A) polymerases in Bacillus subtilis. Biochem. Mol. Biol. Int. 41, 10451050.
  • [104]
    Coburn, G.A., Mackie, G.A. (1996) Overexpression, purification, and properties of Escherichia coli ribonuclease II. J. Biol. Chem. 271, 10481053.
  • [105]
    Cohen, S.N. (1995) Surprises at the 3′ end of prokaryotic RNA. Cell 80, 829832.
  • [106]
    Cao, G.J., Kalapos, M.P., Sarkar, N. (1997) Polyadenylated mRNA in Escherichia coli: modulation of poly(A) RNA levels by polynucleotide phosphorylase and ribonuclease II. Biochimie 79, 211220.
  • [107]
    Gruissem, W. and Schuster, G. (1993) Control of mRNA degradation in organelles. In: Control of Messenger RNA Stability (Belasco, J.G. and Brawerman, G., Eds.), pp. 329–365. Academic Press, San Diego, CA.
  • [108]
    Li, Q.S., Gupta, J.D., Hunt, A.G. (1998) Polynucleotide phosphorylase is a component of a novel plant poly(A) polymerase. J. Biol. Chem. 273, 1753917543.
  • [109]
    Kudla, J., Hayes, R., Gruissem, W. (1996) Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 15, 71377146.
  • [110]
    Hajnsdorf, E., Steier, O., Coscoy, L., Teysset, L., Regnier, P. (1994) Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO J. 13, 33683377.
  • [111]
    Coburn, G.A., Mackie, G.A. (1998) Reconstitution of the degradation of the mRNA for ribosomal protein S20 with purified enzymes. J. Mol. Biol. 279, 10611074.
  • [112]
    Braun, F., Le Derout, J., Regnier, P. (1998) Ribosomes inhibit an RNase E cleavage which induces the decay of the rpsO mRNA of Escherichia coli. EMBO J. 17, 47904797.
  • [113]
    Coburn, G.A., Mackie, G.A. (1999) Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog. Nucleic Acid Res. Mol. Biol. 62, 55108.