Molecular and biotechnological aspects of xylanases

Authors


*Corresponding author. Tel.: +91 (212) 338 234; Fax: +91 (212) 338 234

Abstract

Hemicellulolytic microorganisms play a significant role in nature by recycling hemicellulose, one of the main components of plant polysaccharides. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. Recently cellulase-free xylanases have received great attention in the development of environmentally friendly technologies in the paper and pulp industry. In microorganisms that produce xylanases low molecular mass fragments of xylan and their positional isomers play a key role in regulating its biosynthesis. Xylanase and cellulase production appear to be regulated separately, although the pleiotropy of mutations, which causes the elimination of both genes, suggests some linkage in the synthesis of the two enzymes. Xylanases are found in a cornucopia of organisms and the genes encoding them have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Sequence analyses of xylanases have revealed distinct catalytic and cellulose binding domains, with a separate non-catalytic domain that has been reported to confer enhanced thermostability in some xylanases. Analyses of three-dimensional structures and the properties of mutants have revealed the involvement of specific tyrosine and tryptophan residues in the substrate binding site and of glutamate and aspartate residues in the catalytic mechanism. Many lines of evidence suggest that xylanases operate via a double displacement mechanism in which the anomeric configuration is retained, although some of the enzymes catalyze single displacement reactions with inversion of configuration. Based on a dendrogram obtained from amino acid sequence similarities the evolutionary relationship between xylanases is assessed. In addition the properties of xylanases from extremophilic organisms have been evaluated in terms of biotechnological applications.

Ancillary