• [1]
    Sandine, W.E, Radich, P.C, Elliker, P.R (1972) Ecology of the lactic streptococci. A review. J. Milk Food Technol. 35, 176184.
  • [2]
    Holms, H (1996) Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19, 85116.
  • [3]
    Kim, W.S, Ren, J, Dunn, N.W (1999) Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol. Lett. 171, 5765.
  • [4]
    Deibel, R.H. and Seeley, H.W., Jr. (1974) Streptococcaceae. In: Bergey's Manual of Determinative Bacteriology (Buchanan, R.E. and Gibbons, N.E., Eds.), 8th Edn., pp. 490–517. Williams and Wilkins, Baltimore, MD.
  • [5]
    Klijn, N, Weerkamp, A.H, de Vos, W.M (1995) Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl. Environ. Microbiol. 61, 788792.
  • [6]
    Le Bourgeois, P, Lautier, M, van den Berghe, L, Gasson, M.J, Ritzenthaler, P (1995) Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome comparison with that of Lactococcus lactis subsp. lactis IL1403 reveals a large genome inversion. J. Bacteriol. 177, 28402850.
  • [7]
    Lange, R, Hengge-Aronis, R (1994) The cellular concentration of the σS subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 8, 16001612.
  • [8]
    Brandi, A, Pietroni, P, Gualerzi, C.O, Pon, C.L (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol. 19, 231240.
  • [9]
    Goldenberg, D, Azar, I, Oppenheim, A.B (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol. Microbiol. 19, 241248.
  • [10]
    Whitaker, R.D, Batt, C.A (1991) Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57, 14081412.
  • [11]
    Auffray, Y, Gansel, X, Thammavongs, B, Boutibonnes, P (1992) Heat shock-induced protein synthesis in Lactococcus lactis subsp. lactis. Curr. Microbiol. 24, 281284.
  • [12]
    Kilstrup, M, Jacobsen, S, Hammer, K, Vogensen, F.K (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 63, 18261837.
  • [13]
    Georgopolous, C, Welch, W.J (1993) Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9, 601634.
  • [14]
    Arnau, J, Srrensen, K.I, Appel, K.F, Vogensen, F.K, Hammer, K (1996) Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142, 16851691.
  • [15]
    Van Asseldonk, M, Simons, A, Visser, H, de Vos, W.M, Simons, G (1993) Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J. Bacteriol. 175, 16371644.
  • [16]
    Eaton, T, Shearman, C, Gasson, M (1993) Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis. J. Gen. Microbiol. 139, 32533264.
  • [17]
    Koch, B, Kilstrup, M, Vogensen, F.K, Hammer, K (1998) Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J. Bacteriol. 180, 38733881.
  • [18]
    Frees, D, Ingmer, H (1999) ClpP participates in the degradation of misfolded protein in Lactocococcus lactis. Mol. Microbiol. 31, 7987.
  • [19]
    Arnau, J, S?rrensen, K.I (1997) The isolation of novel heat shock genes in Lactococcus lactis using RNA subtractive hybridization. Gene 188, 229234.
  • [20]
    Hecker, M, Schumann, W, Völker, U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19, 417428.
  • [21]
    Mogk, A, Homuth, G, Scholz, C, Kim, L, Schmid, F.X, Schumann, W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16, 45794590.
  • [22]
    Mogk, A, Völker, A, Engelmann, S, Hecker, M, Schumann, W, Völker, U (1998) Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180, 28952900.
  • [23]
    Duwat, P, Ehrlich, S.D, Gruss, A (1995) The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol. Microbiol. 17, 11211131.
  • [24]
    Nilsson, D, Lauridsen, A.A, Tomoyasu, T, Ogura, T (1994) A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product. Microbiology 140, 26012610.
  • [25]
    Herman, C, Thévenet, D, D'Ari, R, Bouloc, P (1995) Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA 92, 35163520.
  • [26]
    Duwat, P, Ehrlich, S.D, Gruss, A (1999) Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol. Microbiol. 31, 845858.
  • [27]
    Hartke, A, Bouche, S, Laplace, J.M, Benachour, A, Boutibonnes, P, Auffray, Y (1995) UV-inducible proteins and UV-induced cross-protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis. Arch. Microbiol. 163, 329336.
  • [28]
    Hartke, A, Bouche, S, Giard, J.C, Benachour, A, Boutibonnes, P, Auffray, Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 33, 194199.
  • [29]
    Hartke, A, Frère, J, Boutibonnes, P, Auffray, Y (1997) Differential induction of the chaperonin GroEL and the co-chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. lactis. Curr. Microbiol. 34, 2326.
  • [30]
    Panoff, J.M, Legrand, S, Thammavongs, B, Boutibonnes, P (1994) The cold shock response in Lactococcus lactis subsp. lactis. Curr. Microbiol. 29, 213216.
  • [31]
    Panoff, J.M, Thammavongs, B, Laplace, J.M, Hartke, A, Boutibonnes, P, Auffray, Y (1995) Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403. Cryobiology 32, 516520.
  • [32]
    Kim, W.S, Dunn, N.W (1997) Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr. Microbiol. 35, 5963.
  • [33]
    Jones, P.G, Inouye, M (1994) The cold-shock response - a hot topic. Mol. Microbiol. 11, 811818.
  • [34]
    Graumann, P, Marahiel, M.A (1996) Some like it cold: response of microorganisms to cold shock. Arch. Microbiol. 166, 293300.
  • [35]
    Graumann, P.L, Marahiel, A.M (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23, 286290.
  • [36]
    Yamanaka, K, Fang, L, Inouye, M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol. 27, 247255.
  • [37]
    Jiang, W, Hou, Y, Inouye, M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196202.
  • [38]
    Willimsky, G, Bang, H, Fischer, G, Marahiel, M.A (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting viability at low temperatures. J. Bacteriol. 174, 63266335.
  • [39]
    Graumann, P, Wendrich, T.M, Weber, M.H.W, Schröder, K, Marahiel, M.A (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25, 741756.
  • [40]
    Chapot-Chartier, M.P, Schouler, C, Lepeuple, A.S, Gripon, J.C, Chopin, M.C (1997) Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J. Bacteriol. 179, 55895593.
  • [41]
    Wouters, J.A, Sanders, J.W, Kok, J, de Vos, W.M, Kuipers, O.P, Abee, T (1998) Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144, 28852893.
  • [42]
    Jiang, W, Fang, L, Inouye, M (1996) The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J. Bacteriol. 178, 49194925.
  • [43]
    Mayo, B, Derzelle, S, Fernández, M, Léonard, C, Ferain, T, Hols, P, Suárez, J.E, Delcour, J (1997) Cloning and characterization of cspL and cspP, two cold-inducible genes from Lactobacillus plantarum. J. Bacteriol. 179, 30393042.
  • [44]
    Csonka, L.N. and Epstein, W. (1996) Osmoregulation. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp. 1210–1223. ASM Press, Washington, DC.
  • [45]
    Molenaar, D, Hagting, A, Alkema, H, Driessen, A.J.M, Konings, W.N (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J. Bacteriol. 175, 54385444.
  • [46]
    Glaasker, E, Konings, W.N, Poolman, B (1996) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J. Bacteriol. 178, 575582.
  • [47]
    Glaasker, E, Konings, W.N, Poolman, B (1996) Glycine betaine fluxes in Lactobacillus plantarum and hyper- and hypo-osmotic shock. J. Biol. Chem. 271, 1006010065.
  • [48]
    Sanders, J.W, Venema, G, Kok, J, Leenhouts, K (1998) Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Mol. Gen. Genet. 257, 681685.
  • [49]
    Sanders, J.W, Leenhouts, K, Burghoorn, J, Brands, J.R, Venema, G, Kok, J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27, 299310.
  • [50]
    Smart, J.B, Thomas, T.D (1987) Effect of oxygen on lactose metabolism in lactic streptococci. Appl. Environ. Microbiol. 53, 533541.
  • [51]
    Sanders, J.W, Leenhouts, K.J, Haandrikman, A.J, Venema, G, Kok, J (1995) Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177, 52545260.
  • [52]
    Hansson, L, Häggström, M.H (1984) Effects of growth conditions on the activities of superoxide dismutase and NADH-oxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10, 345352.
  • [53]
    Fahey, R.C, Brown, W.C, Adams, W.B, Worsham, M.B (1978) Occurrence of glutathione in bacteria. J. Bacteriol. 133, 11261129.
  • [54]
    Fernándes, L, Steele, J.L (1993) Glutathione content of lactic acid bacteria. J. Dairy Sci. 76, 12331242.
  • [55]
    Wiederholt, K.M, Steele, J.L (1994) Glutathione accumulation in lactococci. J. Dairy Sci. 77, 11831188.
  • [56]
    Condon, S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46, 269280.
  • [57]
    Duwat, P., Sourice, S., Ehrlich, S.D. and Gruss, A. (1995) recA gene involvement in oxidative and thermal stress in Lactococcus lactis. In: Genetics of Streptococci, Enterococci and Lactococci (Ferretti, J.J., Gilmore, M.S., Klaenhammer, T.R. and Brown, F., Eds.), Dev. Biol. Stand. Vol. 85, pp. 445–417. Karger, Basel.
  • [58]
    Keyer, K, Imlay, J.A (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA 93, 1363513640.
  • [59]
    Rallu, F, Gruss, A, Maguin, E (1996) Lactococcus lactis and stress. Antonie van Leeuwenhoek 70, 243251.
  • [60]
    Duwat, P, de Oliveira, R, Ehrlich, S.D, Boiteux, S (1995) Repair of oxidative DNA damage in gram-positive bacteria: the Lactococcus lactis Fpg protein. Microbiology 141, 411417.
  • [61]
    El Karoui, M, Ehrlich, D, Gruss, A (1998) Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence. Proc. Natl. Acad. Sci. USA 95, 626631.
  • [62]
    Duwat, P, Cochu, A, Ehrlich, S.D, Gruss, A (1997) Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179, 44734479.
  • [63]
    Huang, X.F, Huang, D.C, Novel, G, Novel, M (1995) Two Lactococcus lactis genes, including lacX, cooperate to trigger an SOS response in a recA-negative background. J. Bacteriol. 177, 283289.
  • [64]
    Kashket, E.R (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46, 233244.
  • [65]
    Cook, G.M, Russel, J.B (1994) The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis. Curr. Microbiol. 28, 165168.
  • [66]
    Poolman, B, Nijssen, R.M.J, Konings, W.N (1987) Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH. J. Bacteriol. 169, 53735378.
  • [67]
    Kobayashi, H, Suzuki, T, Unemoto, T (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J. Biol. Chem. 261, 627630.
  • [68]
    Nannen, N.L, Hutkins, R.W (1991) Proton-translocating adenosine triphosphatase activity in lactic acid bacteria. J. Dairy Sci. 74, 747751.
  • [69]
    Amachi, S, Ishikawa, K, Toyoda, S, Kagawa, Y, Yokota, A, Tomita, F (1998) Characterization of a mutant of Lactococcus lactis with reduced membrane-bound ATPase activity under acidic conditions. Biosci. Biotechnol. Biochem. 62, 15741580.
  • [70]
    Marquis, R.E, Bender, G.R, Murray, D.R, Wong, A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microbiol. 53, 198200.
  • [71]
    Casiano-Colón, A, Marquis, R.E (1988) Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol. 54, 13181324.
  • [72]
    Poolman, B, Driessen, A.J.M, Konings, W.N (1987) Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J. Bacteriol. 169, 55975604.
  • [73]
    Davey, G, Heap, H (1993) Appearance of the arginine phenotype in Lactococcus lactis subsp. cremoris 2204 following phage transduction. Can. J. Microbiol. 39, 754758.
  • [74]
    Zúñiga, M, Champomier-Verges, M, Zagorec, M, Pérez-Martinez, G (1998) Structural and functional analysis of the gene cluster encoding the enzymes for the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol. 180, 41544159.
  • [75]
    Higuchi, T, Hayashi, H, Abe, K (1997) Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179, 33623364.
  • [76]
    Abe, K, Hayashi, H, Maloney, P.C (1996) Exchange of aspartate and alanine: mechanism for development of a proton-motive force in bacteria. J. Biol. Chem. 271, 30793084.
  • [77]
    Molenaar, D, Bosscher, J.S, ten Brink, B, Driessen, A.J.M, Konings, W.N (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175, 28642870.
  • [78]
    Recsie, P, Snell, E.E (1972) Histidine decarboxylase mutants of Lactobacillus 30a: isolation and growth properties. J. Bacteriol. 112, 624626.
  • [79]
    García-Quintáns, N, Magni, C, De Mendoza, D, López, P (1998) The citrate transport system of Lactococcus lactis subsp. lactis biovar diactetylactis is induced by acid stress. Appl. Environ. Microbiol. 64, 850857.
  • [80]
    Marty-Teysset, C, Posthuma, C, Lolkema, J.S, Schmitt, P, Divies, C, Konings, W.N (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J. Bacteriol. 178, 21782185.
  • [81]
    Israelsen, H, Madsen, S.M, Vrang, A, Hansen, E.B, Johansen, E (1995) Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl. Environ. Microbiol. 61, 25402547.
  • [82]
    Madsen, S.M., Vrang, A. and Israelsen, H. (1996) Engineering of a pH-regulated promoter from Lactococcus lactis. In: Fifth Symposium on Lactic Acid Bacteria, September 8–12. Veldhoven, The Netherlands, poster H11.
  • [83]
    Kunji, E.R.S, Ubbink, T, Matin, A, Poolman, B, Konings, W.N (1993) Physiological responses of Lactococcus lactis ML3 to alternating conditions of growth and starvation. Arch. Microbiol. 159, 372379.
  • [84]
    Poolman, B, Smid, E.J, Veldkamp, H, Konings, W.N (1987) Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J. Bacteriol. 169, 14601468.
  • [85]
    Hartke, A, Bouche, S, Gansel, X, Boutibonnes, P, Auffray, Y (1994) Starvation induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl. Environ. Microbiol. 60, 34743478.
  • [86]
    Ullerup, A., Saxild, H.H. and Nilsson, D. (1996) Regulation of Lactococcus ftsH expression. In: Fifth Symposium on Lactic Acid Bacteria, September 8–12. Veldhoven, The Netherlands, poster H8.
  • [87]
    Araya, T, Ishibashi, N, Shimamura, S, Tanaka, K, Takahashi, H (1993) Genetic and molecular analysis of the rpoD gene from Lactococcus lactis. Biosci. Biotechnol. Biochem. 57, 8892.
  • [88]
    Gansel, X, Hartke, A, Boutibonnes, P, Auffray, Y (1993) Nucleotide sequence of the Lactococcus lactis NCDO 763 (ML3) rpoD gene. Biochim. Biophys. Acta 1216, 115118.
  • [89]
    Kok, J (1996) Inducible gene expression and environmentally regulated genes in lactic acid bacteria. Antonie van Leeuwenhoek 70, 129145.
  • [90]
    Leenhouts, K.J. and Venema, G. (1993) Lactococcal plasmid vectors. In: Plasmids. A Practical Approach (Hardy, K.G., Ed.), pp. 65–94. Oxford University Press, New York.
  • [91]
    de Vos, W.M. and Simons, G.F.M. (1994) Gene cloning and expression systems in lactococci. In: Genetics and Biotechnology of Lactic Acid Bacteria (Gasson, M.J. and de Vos, W.M., Eds.), pp. 52–105. Blackie Academic and Professional, Glasgow, UK.
  • [92]
    Gasson, M.J, Godon, J.-J, Pillidge, C.J, Eaton, T.J, Jury, K, Shearman, C.A (1995) Characterization and exploitation of conjugation in Lactococcus lactis. Int. Dairy J. 5, 757762.
  • [93]
    Kim, S.G. and Batt, C.A. (1993) Characterization of the Lactococcus lactis subsp. lactis groESL. In: Fourth Symposium on Lactic Acid Bacteria, September 5–9. Noordwijkerhout, The Netherlands, poster B32.
  • [94]
    Sanders, J.W, Venema, G, Kok, J (1997) A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl. Environ. Microbiol. 63, 48774882.
  • [95]
    Nauta, A, van Sinderen, D, Karsens, H, Smit, E, Venema, G, Kok, J (1996) Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage r1t. Mol. Microbiol. 19, 13311341.
  • [96]
    Nauta, A, van den Burg, B, Karsens, H, Venema, G, Kok, J (1997) Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nat. Biotechnol. 15, 980983.
  • [97]
    Bolhuis, H, Van Veen, H.W, Poolman, B, Driessen, A.J.M, Konings, W.N (1997) Mechanisms of multidrug transporters. FEMS Microbiol. Rev. 21, 5584.
  • [98]
    Nes, I.F, Diep, D.B, Havarstein, L.S, Brurberg, M.B, Eijsink, V, Holo, H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 113128.
  • [99]
    O'Connell-Motherway, M, Fitzgerald, G.F, van Sinderen, D (1997) Cloning and sequence analysis of putative histidine protein kinases isolated from Lactococcus lactis MG1363. Appl. Environ. Microbiol. 63, 24542459.
  • [100]
    Wouters, P.C, Glaasker, E, Smelt, J.P.P.M (1998) Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 64, 509514.
  • [101]
    Vollmer, A.C, Kwakye, S, Halpern, M, Everbach, E.C (1998) Bacterial stress responses to 1-megahertz pulsed ultrasound in the presence of microbubbles. Appl. Environ. Microbiol. 64, 39273931.
  • [102]
    Jensen, P.R, Hammer, K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl. Environ. Microbiol. 59, 43634366.