SEARCH

SEARCH BY CITATION

References

  • [1]
    Ohlendorf, H.M., Hoffman, D.J., Saiki, M.K., Aldrich, T.W. (1986) Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drainagewater. Sci. Total Environ. 52, 4963.
  • [2]
    Ohlendorf, H.M. and Skorupa, J.P. (1989) Selenium in relation to wildlife and agricultural drainage water. In: Proceedings of the Fourth International Symposium on Uses of Selenium and Tellurium, pp. 314–338. Selenium-Tellurium Development Association, Darien, CT.
  • [3]
    Korte, N.E., Fernando, Q. (1991) A review of arsenic in ground water. Crit. Rev. Environ. Control 21, 139.
  • [4]
    Newman, D.K., Ahmann, D., Morel, F.M.M. (1998) A brief review of microbial arsenate reduction. Geomicrobiology 15, 255268.
  • [5]
    Oremland, R.S. (1994) Biogeochemical transformations of selenium in anoxic environments. In: Selenium in the Environment (Frankenberger, W.T. Jr. and Benson S., Eds.), pp. 389–420. Marcel Dekker, New York.
  • [6]
    Oremland, R.S. (1999) Selenium. Encylopedia of Microbiology, 2nd edn. Academic Press, New York (in press).
  • [7]
    Nazarenko, I.I. and Ermakov, A.N. (1972) Analytical Chemistry of Selenium and Tellurium. John Wiley and Sons, New York.
  • [8]
    Lederer, W.H. and Fensterheim, R.J. (1972) Arsenic: Industrial, Biomedical, Environmental Perspectives. Van Nostrand Reinhold, New York.
  • [9]
    Presser, T.S. (1994) ‘The Kesterton Effect’. Environ. Manag. 18, 437454.
  • [10]
    Azcue, J.M. and Nriagu, J.O. (1994) Arsenic: historical perspectives. In: Arsenic in the Environment. Part I. Cycling and Characterization (Nriagu, J.O., Ed.), pp. 1–16. J. Wiley and Sons, New York.
  • [11]
    Haygarth, P.M. (1994) Global importance and global cycling of selenium. In: Selenium in the Environment (Frankenberger, W.T. Jr. and Benson, S., Eds.), pp. 1–28. Marcel Dekker, New York.
  • [12]
    King, K.A., Custer, T.W., Weaver, D.A. (1994) Reproductive success of barn swallow nesting near selenium-contaminated lake in East Texas, USA. Environ. Pollut. 84, 5358.
  • [13]
    Saiki, M.K., Jennings, M.R., May, T.W. (1992) Selenium and other elements in freshwater fishes from the irrigated San Joaquin valley, California. Sci. Total Environ. 126, 109137.
  • [14]
    Peterson, M.L., Carpenter, R. (1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently stratified fjord. Mar. Chem. 12, 295321.
  • [15]
    Seyler, P., Martin, J.M. (1989) Biogeochemical processes affecting total arsenic and arsenic species distribution in a permanently stratified lake. Environ. Sci. Technol. 23, 12581263.
  • [16]
    Cullen, W.R., Reimer, K.J. (1989) Arsenic speciation in the environment. Chem. Rev. 89, 713764.
  • [17]
    Masscheleyn, P.H., Delaune, R.D., W.H. Patrick Jr. (1991) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ. Sci. Technol. 24, 9196.
  • [18]
    Maest, A.S., Pasilis, S.P., Miller, L.G. and Nordstrom, D.K. (1992) Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In: Water-rock Interaction (Kharaka, Y.K. and Maest, A.S., Eds.), pp. 507–511. A.A. Balkema, Rotterdam.
  • [19]
    Lovley, D.R. (1993) Dissimilatory metal reduction. Ann. Rev. Microbiol. 47, 263290.
  • [20]
    Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P., Rahman, M. (1998) Arsenic poisoning of Bangaladesh groundwater. Nature 395 338.
  • [21]
    Ahmann, D., Krumholz, L.R., Hemond, H.F., Lovley, D.R., Morel, F.M.M. (1997) Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environ. Sci. Technol. 31, 29232930.
  • [22]
    Newman, D.K., Beveridge, T.J., Morel, F.M.M. (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 63, 20222028.
  • [23]
    Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., Morel, F.M.M. (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum, sp. nov. Arch. Microbiol. 165, 380388.
  • [24]
    Dowdle, P.R., Laverman, A.M., Oremland, R.S. (1996) Bacterial reduction of arsenic (V) to arsenic (III) in anoxic sediments. Appl. Environ. Microbiol. 62, 16641669.
  • [25]
    Harrington, J.M., Fendorf, S.E., Rosenzweig, R.F. (1998) Biotic generation of arsenic (III) in metal(oid)-contaminated freshwater lake sediments. Environ. Sci. Technol. 32, 24252430.
  • [26]
    Eary, L.E. (1992) The solubility of amorphous As2S3 from 25 to 90°C. Geochim. Cosmochim. Acta 56, 22672278.
  • [27]
    Velinsky, D.J., Cutter, G.A. (1991) Geochemistry of selenium in a coastal salt marsh. Geochim. Cosmochim. Acta 55, 179191.
  • [28]
    Tokunaga, T.K., Pickering, I.J., G.E. Brown Jr. (1996) Selenium transformations in ponded sediments. Soil Sci. Soc. Am. J. 60, 781790.
  • [29]
    Zhang, Y., Moore, J.M. (1996) Selenium fractionation and speciation in a wetland system. Environ. Sci. Technol. 30, 26132619.
  • [30]
    Oremland, R.S., Hollibaugh, J.T., Maest, A.S., Presser, T.S., Miller, L.G., Culbertson, C.W. (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55, 23332343.
  • [31]
    Oremland, R.S., Steinberg, N.A., Maest, A.S., Miller, L.G., Hollibaugh, J.T. (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ. Sci. Technol. 24, 11571164.
  • [32]
    Dowdle, P.R., Oremland, R.S. (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ. Sci. Technol. 32, 37493755.
  • [33]
    Jayaweera, G.R., Biggar, J.W. (1996) Role of redox potential in chemical transformations of selenium in soils. Soil Sci. Soc. Am. J. 60, 10561063.
  • [34]
    Myneni, S.C., Tokunaga, T.K., G.E. Brown Jr. (1997) Abiotic selenium redox transformations in the presence of Fe (II, III) oxides. Science 278, 11061109.
  • [35]
    Oremland, R.S., Steinberg, N.A., Presser, T.S., Miller, L.G. (1991) In situ selenate reduction in the agricutlural drainage systems of western Nevada. Appl. Environ. Microbiol. 56, 615617.
  • [36]
    Sposito, G., Yang, A., Neal, R.H., Mackzum, A. (1991) Selenate reduction in alluvial soil. Soil Sci. Soc. Am. J. 55, 15971602.
  • [37]
    Maiers, D.T., Wichlacz, P.L., Thompson, D.L., Bruhn, D.F. (1988) Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54, 25912593.
  • [38]
    Steinberg, N.A., Oremland, R.S. (1990) Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl. Environ. Microbiol. 56, 35503557.
  • [39]
    Kuchan, T. and Stolz, J.F., unpublished results.
  • [40]
    Knight, V.K., Nijenhuis, I. and Haggblom, M. (1997) Degradation of aromatic compounds coupled to selenate reduction, ASM meeting abstracts, p. 492.
  • [41]
    Hanaoka, K., Tagawa, S. (1985) Isolation and identification of arsenobetaine as a major water-soluble arsenic compound from muscle of blue pointer Isurus oxyrhincus and whitetip shark Carcarhinus longimanus. Bull. Jpn. Soc. Fish. Sci. 51, 681685.
  • [42]
    Hanoaka, K., Fujita, T., Matsuura, M., Tagawa, S., Kaise, T. (1987) Identification of arsenobetaine as a major arsenic compound in muscle of two demersal sharks, shortnose dogfish Squalus brevirostris and starspotted shark Mustelus manazo. Comp. Biochem. Physiol. 86B, 681682.
  • [43]
    Edmonds, J.S., Francesconi, K.A. (1988) The origin of arsenobetaine in marine animals. Appl. Organomet. Chem. 2, 283295.
  • [44]
    Hanaoka, K., Tagawa, S., Kaise, T. (1992) The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia 235/236, 623628.
  • [45]
    Reimer, K.J., Thompson, J.A.J. (1988) Arsenic speciation in marine interstitial water. The occurrence of organoarsenicals. Biogeochemistry 6, 211237.
  • [46]
    Anderson, L.C.D., Bruland, K.W. (1991) Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environ. Sci. Technol. 25, 420427.
  • [47]
    Shibata, Y., Morita, M. (1988) A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric. Biol. Chem. 52, 10871089.
  • [48]
    Ansede, J.H., Yoch, D.C. (1997) Comparison of selenium and sulfur volatilization by dimethylsulfoniopropionate lyase (DMSP) in two marine bacteria and estuarine sediments. FEMS Microbiol. Ecol. 23, 315324.
  • [49]
    Fan, T., personal communication.
  • [50]
    Heider, J., Boeck, A. (1994) Selenium metabolism in micro-organisms. Adv. Microbiol. Physiol. 35, 71109.
  • [51]
    Kletzin, A., Adams, M.W.W. (1996) Tungsten in biological systems. FEMS Microbiol. Rev. 18, 563.
  • [52]
    Dilworth, G.L. (1982) Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch. Biochem. Biophys. 219, 3038.
  • [53]
    Nakahara, H., Ishikawa, T., Sarai, Y., Kondo, I. (1977) Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266, 165167.
  • [54]
    Cervantes, C., Ji, G., Ramirez, J.L., Silver, S. (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15, 355367.
  • [55]
    Suzuki, K., Wakao, N., Kimura, T., Sakka, K., Ohmiya, K. (1998) Expression and regulation of the arsenic resistance operon of Acidophilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl. Environ. Microbiol. 64, 411418.
  • [56]
    Cai, J., Salmon, K., DuBow, M.S. (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144, 27052713.
  • [57]
    Oden, K.L., Gladysheva, T.B., Rosen, B.P. (1994) Arsenate reduction mediated by the plasmid-encoded arsC protein is coupled to glutathione. Mol. Microbiol. 12, 301306.
  • [58]
    Gladysheva, T.B., Oden, K.L., Rosen, B.P. (1994) Properties of the arsenate reductase of plasmid R 773. Biochemistry 33, 72887293.
  • [59]
    Ji, G., Garber, E.A.E., Armes, L.G., Chen, C.-M., Fuchs, J.A., Silver, S. (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33, 72947299.
  • [60]
    Silver, S., Ji, G., Broer, S., Dey, S., Dou, D., Rosen, B.P. (1993) Orphan enzyme or patriarch of a new tribe: arsenic resistance ATPase of bacterial plasmids. Mol. Microbiol. 8, 637642.
  • [61]
    Diorio, C., Cai, J., Marmor, J., Shinder, R., DuBow, M.S. (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J. Bacteriol. 177, 20502056.
  • [62]
    Moore, M.D., Kaplan, S. (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: Characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 174, 15051514.
  • [63]
    Moore, M.D., Kaplan, S. (1994) Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60, 1723.
  • [64]
    Tomei, F.A., Barton, L.L., Lemanski, C.L., Zocco, T.G. (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can. J. Microbiol. 38, 13281333.
  • [65]
    Tomei, F.A., Barton, L.L., Lemanski, C.L., Zocco, T.G., Fink, N.H., Sillerud, L.O. (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J. Ind. Microbiol. 14, 329336.
  • [66]
    Lortie, L., Gould, W.D., Rajan, S., McCready, R.G.L., Cheng, K.-J. (1992) Reduction of selenate and selenite by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58, 40434044.
  • [67]
    Losi, M.E., W.T. Frankenberger Jr. (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: Isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63, 30793084.
  • [68]
    Avazeri, C., Turner, R.J., Pommier, J., Weiner, J.H., Giordano, G., Vermeglio, A. (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143, 11811189.
  • [69]
    Gugliuzza, T., Kail, B. and Stolz, J.F., unpublished results.
  • [70]
    Zehr, J.P., Oremland, R.S. (1987) Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol. 53, 13651369.
  • [71]
    McCarty, S., Chasteen, T., Marshall, M., Fall, R., Bachofen, R. (1993) Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds. FEMS Microbiol. Lett. 112, 9398.
  • [72]
    Gadd, G.M. (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11, 297316.
  • [73]
    Madigan, M.T., Martenko, J.M. and Parker, J. (1997) Brock Biology of Microorganisms, 8th edn. Prentice Hall, Upper Saddle River.
  • [74]
    Laverman, A.M., Switzer Blum, J., Schaefer, J.K., Phillips, E.J.P., Lovley, D.R., Oremland, R.S. (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61, 35563561.
  • [75]
    Macy, J.M., Michel, T.A., Kirsch, D.A. (1989) Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol. Lett. 61, 195198.
  • [76]
    Oremland, R.S., Switzer Blum, J., Culbertson, C.W., Visscher, P.T., Miller, L.G., Dowdle, P., Strohmaier, F.E. (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60, 30113019.
  • [77]
    Macy, J.M., Rech, S., Auling, G., Dorsch, M., Stackenbrandt, E., Sly, L.I. (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43, 135142.
  • [78]
    Switzer Blum, J., Bindi, A.B., Buzzelli, J., Stolz, J.F., Oremland, R.S. (1998) Bacillus arsenicoselenatis sp. nov.: two haloalkaliphiles from Mono Lake, California, which respire oxyanions of selenium and arsenic. Arch. Microbiol. 171, 1930.
  • [79]
    Knight, V.K., Blakemore, R.P. (1998) Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch. Microbiol. 169, 239248.
  • [80]
    Rasmussen, M.A. and Wickman, T.A. (1998) Selenium reduction by Wolinella succinogenes, 8th Int. Symp. Microbiol. Ecol., p. 276. meeting abstracts.
  • [81]
    Switzer Blum, J. and Oremland, R.S., unpublished results.
  • [82]
    Knight, V.K. and Haggblom, M., personal communication.
  • [83]
    Macy, J.M., Lawson, S. (1993) Cell yield (YM) of Thauera selenatis grown anaerobically with acetate plus selenate or nitrate. Arch. Microbiol. 160, 295298.
  • [84]
    Rech, S.A., Macy, J.M. (1992) The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J. Bacteriol. 174, 73167320.
  • [85]
    Schroeder, I., Rech, S., Krafft, T., Macy, J.M. (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272, 2376523768.
  • [86]
    Steinberg, N.A., Switzer Blum, J., Hochstein, L., Oremland, R.S. (1992) Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl. Environ. Microbiol. 58, 426428.
  • [87]
    Stolz, J.F., Ellis, D.J., Switzer Blum, J., Ahmann, D., Lovley, D.R., Oremland, R.S. (1999) Sulfurospirillum barnesii sp. nov., Sulfurospirillum arsenophilum sp. nov., and the Sulfurospirillum clade in the Epsilon Proteobacteria. Int. J. Syst. Bacteriol. 49, 11771180.
  • [88]
    Lonergan, D.J., Jenter, H., Coates, J.D., Schmidt, T., Lovley, D.R. (1996) Phylogeny of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178, 24022408.
  • [89]
    Lovley, D.R., Coates, J.D., Saffarini, D.A. and Lonergan, D.J. (1997) Dissimilatory iron reduction. In: Iron and Related Transition Metals in Microbial Metabolism (Winkelman, G. and Carrano, C.J., Eds.), pp. 187–215. Harwood Academic Press.
  • [90]
    Stolz, J.F., Gugliuzza, T., Switzer Blum, J., Oremland, R.S., Murillo, F.M. (1997) Differential cytochrome content and reductase activity in Geospirillum barnesii strain SES-3. Arch. Microbiol. 167, 15.
  • [91]
    Finster, K., Liesack, W., Tindall, B.J. (1997) Sulfurospirillum arcahonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int. J. Syst. Bacteriol. 47, 12121217.
  • [92]
    Ahmann, D., Roberts, A.L., Krumholz, L.R., Morel, F.M.M. (1994) Microbe grows by reducing arsenic. Nature 371 750.
  • [93]
    Macy, J.M., Nunan, K., Hagen, K.D., Dixon, D.R., Harbour, P.J., Cahill, M., Sly, L.I. (1996) Chrysiogenes arsenatis, gen nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46, 11531157.
  • [94]
    Krafft, T., Macy, J.M. (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255, 647653.
  • [95]
    Stolz, J.F., Gugliuzza, T. and Oremland, R.S. (1998) The effects of tungstate on the growth and enzyme activity of the dissimilatory selenate reducing bacterium Sulfurospirillum barnesii, p. 337. ASM meeting abstracts.
  • [96]
    Hille, R. (1996) The mononuclear molybedum enzymes. Chem. Rev. 96, 27572816.
  • [97]
    Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reliability. Ann. Rev. Genet. 22, 521526.