SEARCH

SEARCH BY CITATION

References

  • [1]
    Marth, E.H. (1998) Extended shelf life refrigerated foods: microbiological quality and safety. Food Technol. 52, 5762.
  • [2]
    Klaenhammer, T.R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 3986.
  • [3]
    Jack, R.W., Tagg, J.R., Ray, B. (1995) Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59, 171200.
  • [4]
    Nes, I.F., Diep, D.B., Håvarstein, L.S., Brurberg, M.B., Eijsink, V., Holo, H. (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 70, 113128.
  • [5]
    Sahl, H.-G., Bierbaum, G. (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annu. Rev. Microbiol. 52, 4179.
  • [6]
    Farber, J.M., Peterkin, P.I. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476511.
  • [7]
    Muriana, P.M. (1996) Bacteriocins for control of Listeria spp. in food. J. Food Prot. Suppl. 56, 5463.
  • [8]
    Quadri, L.E.N., Sailer, M., Roy, K.L., Vederas, J.C., Stiles, M.E. (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269, 1220412211.
  • [9]
    Cintas, L.M., Casaus, P., Håvarstein, L.S., Hernández, P.E., Nes, I.F. (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63, 43214330.
  • [10]
    Eijsink, V.G.H., Skeie, M., Middelhoven, P.H., Brurberg, M.B., Nes, I.F. (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 64, 32753281.
  • [11]
    Jack, R.W., Wan, J., Gordon, J., Harmark, K., Davidson, D.E., Hillier, A.J., Wettenhall, R.E.H., Hickey, M.W., Coventry, M.J. (1996) Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl. Environ. Microbiol. 62, 28972903.
  • [12]
    Venema, K., Dost, M.H.R., Venema, G., Kok, J. (1996) Mutational analysis and chemical modification of Cys24 of lactococcin B, a bacteriocin produced by Lactococcus lactis. Microbiology 142, 28252830.
  • [13]
    Aymerich, T., Holo, H., Håvarstein, L.S., Hugas, M., Garriga, M., Nes, I.F. (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62, 16761682.
  • [14]
    Bhugaloo-Vial, P., Dousset, X., Métivier, A., Sorokine, O., Anglade, P., Boyaval, P., Marion, D. (1996) Purification and amino acid sequences of piscicocins V1a and V1b, two class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity. Appl. Environ. Microbiol. 62, 44104416.
  • [15]
    Hastings, J.W., Sailer, M., Johnson, K., Roy, K.L., Vederas, J.C., Stiles, M.E. (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173, 74977500.
  • [16]
    Henderson, J.T., Chopko, A.L., van Wassenaar, P.D. (1992) Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295, 512.
  • [17]
    Kaiser, A.L., Montville, T.J. (1996) Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Environ. Microbiol. 62, 45294535.
  • [18]
    Larsen, A.G., Nørrung, B. (1993) Inhibition of Listeria monocytogenes by bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Lett. Appl. Microbiol. 17, 132134.
  • [19]
    Tichaczek, P.S., Nissen-Meyer, J., Nes, I.F., Vogel, R.F., Hammes, W.P. (1992) Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst. Appl. Microbiol. 15, 460468.
  • [20]
    Métivier, A., Pilet, M.-F., Dousset, X., Sorokine, O., Anglade, P., Zagorec, M., Piard, J.-C., Marion, D., Cenatiempo, Y., Fremaux, C. (1998) Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology 144, 28372844.
  • [21]
    Bennik, M.H.J., Vanloo, B., Brasseur, R., Gorris, L.G.M., Smid, E.J. (1998) A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochim. Biophys. Acta 1373, 4758.
  • [22]
    Holck, A., Axelsson, L., Birkeland, S.-E., Aukrust, T., Blom, H. (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Gen. Microbiol. 138, 27152720.
  • [23]
    Tichaczek, P.S., Vogel, R.F., Hammes, W.P. (1994) Cloning and sequencing of sakP encoding, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 140, 361367.
  • [24]
    Héchard, Y., Dérijard, B., Letellier, F., Cenatiempo, Y. (1992) Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138, 27252731.
  • [25]
    Fleury, Y., Abdel Dayem, M., Montagne, J.J., Chaboisseau, E., Le Caer, J.P., Nicolas, P., Delfour, A. (1996) Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides. J. Biol. Chem. 271, 1442114429.
  • [26]
    Tomita, H., Fujimoto, S., Tanimoto, K., Ike, Y. (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol. 178, 35853593.
  • [27]
    Kanatani, K., Oshimura, M., Sano, K. (1995) Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl. Environ. Microbiol. 61, 10611067.
  • [28]
    Abee, T. (1995) Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129, 110.
  • [29]
    Sailer, M., Helms, G.L., Henkel, T., Niemczura, W.P., Stiles, M.E., Vederas, J.C. (1993) 15 N- and 13 C-labeled media from Anabaena sp. for universal isotopic labeling of bacteriocins NMR resonance assignments of leucocin A from Leuconostoc gelidum and nisin A from Lactococcus lactis. Biochemistry 32, 310318.
  • [30]
    Fregeau Gallagher, N.L., Sailer, M., Niemczura, W.P., Nakashima, T.T., Stiles, M.E., Vederas, J.C. (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36, 1506215072.
  • [31]
    Chen, Y., Shapira, R., Eisenstein, M., Montville, T.J. (1997) Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl. Environ. Microbiol. 63, 524531.
  • [32]
    Fremaux, C., Héchard, Y., Cenatiempo, Y. (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141, 16371645.
  • [33]
    Venema, K., Abee, T., Haandrikman, A.J., Leenhouts, K.J., Kok, J., Konings, W.N., Venema, G. (1993) Mode of action of lactococcin B, a thiol-activated bacteriocin from lactococcus lactis. Appl. Environ. Microbiol. 59, 10411048.
  • [34]
    Morgan, S., Ross, R.P., Hill, C. (1995) Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B and M. Appl. Environ. Microbiol. 61, 29953001.
  • [35]
    Holo, H., Nilssen, O., Nes, I.F. (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris isolation and characterization of the protein and its gene. J. Bacteriol. 173, 38793887.
  • [36]
    Stoddard, G.W., Petzel, J.P., van Belkum, M.J., Kok, J., McKay, L.L. (1992) Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar. diacetylactis WM4. Appl. Environ. Microbiol. 58, 19521961.
  • [37]
    Nissen-Meyer, J., Holo, H., Håvarstein, L.S., Sletten, K., Nes, I.F. (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174, 56865692.
  • [38]
    Nissen-Meyer, J., Granly Larsen, A., Sletten, K., Daeschel, M., Nes, I.F. (1993) Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J. Gen. Microbiol. 139, 19731978.
  • [39]
    Montville, T.J., Chen, Y. (1998) Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl. Microbiol. Biotechnol. 50, 511519.
  • [40]
    Fimland, G., Blingsmo, O.R., Sletten, K., Jung, G., Nes, I.F., Nissen-Meyer, J. (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol. 62, 33133318.
  • [41]
    Brasseur, R., Pillot, T., Lins, L., Vandekerckhove, J., Rosseneu, M. (1997) Peptides in membranes: tipping the balance of membrane stability. Trends Biochem. Sci. 22, 167171.
  • [42]
    Casaus, P., Nilsen, T., Cintas, L.M., Nes, I.F., Hernández, P.E., Holo, H. (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143, 22872294.
  • [43]
    Hühne, K., Axelsson, L., Holck, A., Kröckel, L. (1996) Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative L. sake strains. Microbiology 142, 14371448.
  • [44]
    Quadri, L.E.N., Kleerebezem, M., Kuipers, O.P., de Vos, W.M., Roy, K.L., Vederas, J.C., Stiles, M.E. (1997) Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for a global inducer-mediated transcriptional regulation. J. Bacteriol. 179, 61636171.
  • [45]
    Marugg, J.D., Gonzalez, C.F., Kunka, B.S., Ledeboer, A.M., Pucci, M.J., Toonen, M.Y., Walker, S.A., Zoetmulder, L.C.M., Vandenbergh, P.A. (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0]. Appl. Environ. Microbiol. 58, 23602367.
  • [46]
    Bukhtiyarova, M., Yang, R., Ray, B. (1994) Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcus acidilactici strain. Appl. Environ. Microbiol. 60, 34053408.
  • [47]
    van Belkum, M.J., Stiles, M.E. (1995) Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl. Environ. Microbiol. 61, 35733579.
  • [48]
    Axelsson, L., Holck, A. (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177, 21252137.
  • [49]
    Venema, K., Venema, G., Kok, J. (1995) Lactococcal bacteriocins: mode of action and immunity. Trends Microbiol. 3, 299304.
  • [50]
    Håvarstein, L.S., Holo, H., Nes, I.F. (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common amongst peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140, 23832389.
  • [51]
    Håvarstein, L.S., Diep, B.D., Nes, I.F. (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16, 229240.
  • [52]
    Kuipers, O.P., de Ruyter, P.G.G.A., Beerthuyzen, M., de Vos, W.M. (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J. Biotechnol. 64, 1521.
  • [53]
    Bourret, R.B., Borkovich, K.A., Simon, M.I. (1991) Signal transduction pathways involving protein phosphorilation in prokaryotes. Ann. Rev. Biochem. 60, 401441.
  • [54]
    Nilsen, T., Nes, I.F., Holo, H. (1998) An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180, 18481854.
  • [55]
    Eijsink, V.G.H., Brurberg, M.B., Middelhoven, P.H., Nes, I.F. (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178, 22322237.
  • [56]
    Diep, D.B., Håvarstein, L.S., Nes, I.F. (1995) A bacteriocin-like peptide induces bacteriocin synthesis in L. plantarum C11. Mol. Microbiol. 18, 631639.
  • [57]
    Saucier, L., Poon, A., Stiles, M.E. (1995) Induction of bacteriocin in Carnobacterium piscicola LV17. J. Appl. Bacteriol. 78, 684690.
  • [58]
    Biswas, S.R., Ray, P., Johnson, M.C., Ray, B. (1991) Influence of growth conditions on the production of a bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57, 12651267.
  • [59]
    Yang, R., Ray, B. (1994) Factors influencing production of bacteriocins by lactic acid bacteria. Food Mircrobiol. 11, 281291.
  • [60]
    Barefoot, S.F., Klaenhammer, T.R. (1984) Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob. Agents Chemother. 26, 328334.
  • [61]
    de Vuyst, L., Calleweart, R., Crabbé, K. (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavorable conditions. Microbiology 142, 817827.
  • [62]
    Venema, K., Kok, J., Marugg, J.D., Toonen, M.Y., Ledeboer, A.M., Venema, G., Chikindas, M.L. (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: Ped B is the immunity protein and PedD is the precursor processing enzyme. Mol. Microbiol. 17, 515522.
  • [63]
    Felmlee, T., Pellett, S., Welch, R.A. (1985) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J. Bacteriol. 163, 94105.
  • [64]
    Hui, F.M., Morrisson, D.A. (1991) Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J. Bacteriol. 173, 372381.
  • [65]
    Hui, F.M., Zhou, L., Morrisson, D.A. (1995) Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153, 2531.
  • [66]
    Wagner, W., Vogel, M., Goebel, W. (1983) Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J. Bacteriol. 154, 200210.
  • [67]
    Fath, F.J., Kotler, R. (1993) ABC transporters: bacterial exporters. Microbiol. Rev. 57, 9951017.
  • [68]
    Motlagh, A.M., Bukhtiyarova, M., Ray, B. (1994) Complete nucleotide sequences of pSMB74, a plasmid encoding production of pediocin AcH in Pediococcus acidilactici. Lett. Appl. Microbiol. 18, 305312.
  • [69]
    McCormick, J.K., Worobo, R.W., Stiles, M.E. (1996) Expression of the antimicrobial peptide carnobacteriocin B2 by a signal peptide-dependent general secretory pathway. Appl. Environ. Microbiol. 62, 40954099.
  • [70]
    Biet, F., Berjeaud, J.M., Worobo, R.W., Cenatiempo, Y., Fremaux, C. (1998) Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology 144, 28452854.
  • [71]
    Horn, N., Martínez, M.I., Martínez, J.M., Hernández, P.E., Gasson, M.J., Rodríguez, J.M., Dodd, H.M. (1998) Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl. Environ. Microbiol. 64, 818823.
  • [72]
    Allison, G.E., Ahn, C., Stiles, M.E., Klaenhammer, T.R. (1995) Utilisation of the leucocin A export system in Leuconostoc gelidum for production of a Lactobacillus bacteriocin. FEMS Microbiol. Lett. 131, 8793.
  • [73]
    Allison, G.E., Worobo, R.W., Stiles, M.E., Klaenhammer, T.R. (1995) Heterologous expression of the lactacin F peptides by Carnobacterium piscicola LV17. Appl. Environ. Microbiol. 61, 13711377.
  • [74]
    van Belkum, M.J., Worobo, R.W., Stiles, M.E. (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol. Microbiol. 23, 12931301.
  • [75]
    Chikindas, M.L., Venema, K., Ledeboer, A.M., Venema, G., Kok, J. (1995) Expression of lactococcin A and pediocin PA-1 in heterologous hosts. Lett. Appl. Microbiol. 21, 183189.
  • [76]
    Worobo, R.W., VanBelkum, M.J., Sailer, M., Roy, K.L., Vederas, J.C., Stiles, M.E. (1995) A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177, 31433149.
  • [77]
    Quadri, L.E., Sailer, M., Terebiznik, M.R., Roy, K.L., Vederas, J.C., Stiles, M.E. (1995) Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocin B2 and BM1. J. Bacteriol. 177, 11441151.
  • [78]
    Saucier, L., Paradkar, A.S., Frost, L.S., Jensen, S.E., Stiles, M.E. (1995) Transcriptional analysis and regulation of carnobacteriocin production in Carnobacterium piscicola LV17. Gene 188, 271277.
  • [79]
    Venema, K., Haverkort, R.E., Abee, T., Haandrikman, A.J., Leenhouts, K.J., Venema, G., Kok, J. (1994) Mode of action of LciA, the lactococcin A immunity protein. Mol. Microbiol. 14, 521533.
  • [80]
    Kok, J., Holo, H., van Belkum, M., Haandrikman, A.J. and Nes, I.F. (1993) Non-nisin bacteriocins in lactococci: biochemistry, genetics and mode of action. In: Bacteriocins of Lactic Acid Bacteria (Hoover, D.G. and Steenson, L.R. Eds.), pp. 121–151. Academic Press, Inc., New York.
  • [81]
    Abdel-Dayem, M., Fleury, Y., Devilliers, G., Chaboisseau, E., Girard, R., Nicolas, P., Delfour, A. (1996) The putative immunity protein of the Gram-positive bacteria Leuconostoc mesenteroides in preferentially located in the cytoplasm compartment. FEMS Microbiol. Lett. 138, 251259.
  • [82]
    Rost, B., Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc. Natl. Acad. Sci. USA 90, 75587562.
  • [83]
    Rost, B., Casadio, R., Fariselli, P., Sander, C. (1995) Prediction of helical transmembrane segments at 95% accuracy. Protein Sci. 4, 521533.
  • [84]
    Bhunia, A.K., Johnson, M.C., Kalchayanand, N. (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol. 70, 2533.
  • [85]
    Bruno, M.E.C., Montville, T.J. (1993) Common mechanistic action of bacteriocin from lactic acid bacteria. Appl. Environ. Microbiol. 59, 30033010.
  • [86]
    Chikindas, M.L., Garcia-Garcera, M.J., Driessen, A.J.M., Ledeboer, A.M., Nissen-Meyer, J., Nes, I.F., Abee, T., Konings, W.N., Venema, G. (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59, 35773584.
  • [87]
    Montville, T.J., Bruno, M.E.C. (1994) Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int. J. Food Microbiol. 24, 5374.
  • [88]
    Maftah, A., Renault, D., Vignoles, C., Héchard, Y., Bressollier, P., Ratinaud, M.H., Cenatiempo, Y., Julien, R. (1993) Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. J. Bacteriol. 175, 32323235.
  • [89]
    Chen, Y., Montville, T.J. (1995) Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell death in Listeria monocytogenes Scott A. J. Appl. Bacteriol. 79, 684690.
  • [90]
    Sahl, H.-G., Brandis, H. (1983) Efflux of low-Mr substances from the cytoplasm of sensitive cells caused by the staphylococcin-like agent Pep5. FEMS Microbiol. Lett. 16, 7579.
  • [91]
    Abee, T., Rombouts, F.M., Hugenholtz, J., Guihard, G., Letellier, L. (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl. Environ. Microbiol. 60, 19621968.
  • [92]
    Moll, G.N., Roberts, G.C.K., Konings, W.N., Driessen, A.J.M. (1996) Mechanism of the lantibiotic-induced pore formation. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Biol. 69, 185195.
  • [93]
    Chen, Y., Ludescher, R.D., Montville, T.J. (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments of phospholipid vesicles. Appl. Environ. Microbiol. 63, 47704777.
  • [94]
    Chen, Y., Ludescher, R.D., Montville, T.J. (1998) Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appl. Environ. Microbiol. 64, 35303532.
  • [95]
    Fimland, G., Jack, R., Jung, G., Nes, I.F., Nissen-Meyer, J. (1998) The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus. Appl. Environ. Microbiol. 64, 50575060.
  • [96]
    Miller, K.W., Schamber, R., Chen, Y., Ray, B. (1998) Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Appl. Environ. Microbiol. 64, 1420.
  • [97]
    Franke, C.M., Leenhout, K.J., Haandrikman, A.J., Kok, J., Venema, G., Venema, K. (1996) Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. J. Bacteriol. 176, 17661769.
  • [98]
    Benz, R., Jung, G. and Sahl, H.-G. (1991) Mechanism of channel formation by lantibiotics in black lipid membranes. In: nisin and novel lantibiotics (Jung, G. and Sahl, H.-G., Eds.), pp. 359–372. Escom, Leiden.
  • [99]
    Larsen, A.G., Vogensen, F.K., Josephsen, J. (1993) Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75, 113122.
  • [100]
    Quadri, L.E.N., Yan, L.Z., Stiles, M.E., Vederas, J.C. (1997) Effect of amino acid substitutions on the activity of carnobacteriocin B2. J. Biol. Chem. 272, 33843388.
  • [101]
    Ojcius, D.M., Young, J.D.-E. (1991) Cytolytic pore-formation proteins and peptides: is there a common structural motif. Trends Biochem. Sci. 16, 225229.
  • [102]
    Miller, K.W., Schamber, R., Osmanagaoglu, O., Ray, B. (1998) Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl. Environ. Microbiol. 64, 19972005.
  • [103]
    Cowan, S.W., Rosenbusch, J.P. (1994) Folding pattern diversity of integral membrane proteins. Science 264, 914916.
  • [104]
    Harris, L.J., Fleming, H.P., Klaenhammer, T.R. (1991) Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A and UAL 500 to nisin. J. Food Prot. 54, 836840.
  • [105]
    Ming, X., Daeschel, M.A. (1993) Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J. Food Prot. 56, 944948.
  • [106]
    Rekhif, N., Atrih, A., Lefebvre, G. (1994) Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria. Curr. Microbiol. 28, 237241.
  • [107]
    Mazzotta, A.S., Montville, T.J. (1997) Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10°C and 30°C. J. Appl. Bacteriol. 82, 3238.
  • [108]
    Schillinger, U., Chung, H.-S., Keppler, K., Holzapfel, W.H. (1998) Use of bacteriocinogenic lactic acid bacteria to inhibit spontaneous nisin-resistant mutants of Listeria monocytogenes Scott A. J. Appl. Microbiol. 85, 657663.
  • [109]
    Wan, J., Harmark, K., Davidson, B.E., Hillier, A.J., Gordon, J.B., Wilcock, A., Hickey, M.W., Coventry, M.J. (1997) Inhibition of Listeria monocytogenes by piscicolin 126 in milk and Camembert cheese manufactured with a thermophilic starter. J. Appl. Microbiol. 82, 273280.
  • [110]
    Hanlin, M.B., Kalchayanand, N., Ray, P., Ray, B. (1993) Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity. J. Food Prot. 56, 252255.
  • [111]
    Song, H.-J., Richard, J. (1997) Antilisterial activity of three bacteriocins used at sub minimal inhibitory concentrations and cross-resistance of the survivors. Int. J. Food Microbiol. 36, 155161.
  • [112]
    Crandall, A.D., Montville, T.J. (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64, 231237.
  • [113]
    Mazzotta, A.S., Crandall, A.D., Montville, T.J. (1997) Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl. Environ. Microbiol. 63, 26542659.
  • [114]
    Noerlis, Y., Ray, B. (1993) Factors influencing immunity and resistance of Pediococcus acidilactici to the bacteriocin, pediocin AcH. Lett. Appl. Microbiol. 18, 138143.
  • [115]
    Ray, B. (1993) Sublethal injury, bacteriocins and food microbiology. ASM News 59, 285291.
  • [116]
    Ming, X., Daeschel, M.A. (1995) Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes Scott A. J. Food Prot. 58, 416420.
  • [117]
    Verheul, A., Russell, N.J., van't Hof, R., Rombouts, F.M., Abee, T. (1997) Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl. Environ. Microbiol. 63, 34513457.
  • [118]
    Davies, E.A., Falahee, M.B., Adams, M.R. (1996) Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J. Appl. Bacteriol. 81, 139146.
  • [119]
    Hurst, A. (1981) Nisin. Adv. Appl. Microbiol. 27, 85123.
  • [120]
    Ray, B. and Daeschel, M.A. (1992) Food biopreservatives of microbial origin. CRC Press, Boca Raton, FL.
  • [121]
    Ferreira, M.A.S.S., Lund, B.M. (1996) The effect of nisin on Listeria monocytogenes in culture medium and long-life cottage cheese. Lett. Appl. Microbiol. 22, 433438.
  • [122]
    Ukuku, D.O., Shelef, L.A. (1997) Sensitivity of six strains of Listeria monocytogenes to nisin. J. Food Prot. 60, 867869.
  • [123]
    Rasch, M., Knøchel, S. (1998) Variations in tolerance of Listeria monocytogenes to nisin, pediocin PA-1 and bavaricin A. Lett. Appl. Microbiol. 27, 275278.
  • [124]
    Motlagh, A.M., Holla, S., Johnson, M.C., Ray, B., Field, R.A. (1992) Inhibition of Listeria spp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. J. Food Prot. 55, 337343.
  • [125]
    Raccach, M.R., McGarth, R., Daftarian, H. (1989) Antibiosis of some lactic acid bacteria including Lactobacillus acidophilus towards Listeria monocytogenes. Int. J. Food Microbiol. 9, 2532.
  • [126]
    Spelhaug, S.R., Harlander, S.K. (1989) Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot. 52, 856862.
  • [127]
    Robichon, D., Gouin, E., Débarbouillé, M., Cossart, P., Cenatiempo, Y., Héchard, Y. (1997) The rpoN (σ54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J. Bacteriol. 179, 75917594.
  • [128]
    Breuer, B., Radler, F. (1996) Inducible resistance against nisin in Lactobacillus casei. Arch. Microbiol. 165, 114118.
  • [129]
    Dykes, G.A., Hastings, J.W. (1998) Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl. Microbiol. 26, 58.
  • [130]
    Maisnier-Patin, S., Tatini, S.R., Richard, J. (1995) Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in milk. Lait 75, 8191.
  • [131]
    Tichaczek, P.S., Vogel, R.F., Hammes, W.P. (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH 1174. Arch. Microbiol. 160, 279283.
  • [132]
    Schved, F., Lalazar, A., Lindner, P., Juven, B.J. (1994) Interaction of the bacteriocin produced by Pediococcus acidilactici SJ-1 with the cell envelope of Lactobacillus spp.. Lett. Appl. Microbiol. 19, 281283.
  • [133]
    Hastings, J.W., Stiles, M.E. (1991) Antibiosis of Leuconostoc gelidum isolated from meat. J. Appl. Bacteriol. 70, 127134.
  • [134]
    Felix, J.V., Papathanasopoulos, M.A., Smith, A.A., von Holy, A., Hastings, J.W. (1994) Characterization of leucocin B-Ta11a: a bacteriocin from Leuconostoc carnosum Ta11a isolated from meat. Curr. Microbiol. 29, 207212.
  • [135]
    Ahn, C., Stiles, M.E. (1990) Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat. Appl. Environ. Microbiol. 56, 25032510.
  • [136]
    Pilet, M.-F., Dousset, X., Barre, R., Novel, G., Desmazeaud, M., Piard, J.-C. (1995) Evidence of two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. J. Food Prot. 58, 256262.
  • [137]
    Bennik, M.H.J., Smid, E.J., Gorris, L.G.M. (1997) Vegetable-associated Pediococcus parvulus produces pediocin PA-1. Appl. Environ. Microbiol. 63, 20742076.
  • [138]
    Bhunia, A.K., Johnson, M.C., Ray, B. (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. 2, 319322.
  • [139]
    Gonzalez, C.F., Kunka, B.S. (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microbiol. 53, 25342538.
  • [140]
    Schved, F., Lalazar, A., Henis, Y., Juven, B.J. (1993) Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 74, 6777.
  • [141]
    Ennahar, S., Aoude-Werner, D., Sorokine, O., van Dorsselear, A., Bringel, F., Hubert, J.-C., Hasselmann, C. (1996) Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl. Environ. Microbiol. 62, 43814387.
  • [142]
    Schillinger, U., Lücke, F.-K. (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55, 19011906.
  • [143]
    Holck, A.L., Axelsson, L., Hühne, K., Kröckel, L. (1994) Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol. Lett. 115, 143150.
  • [144]
    Lewus, C.B., Kaiser, A., Montville, T.J. (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol. 57, 16831688.