• [1]
    Hewett-Emmett, D, Tashian, R.E (1996) Functional diversity, conservation and convergence in the evolution of the α-, β- and γ-carbonic anhydrase gene families. Mol. Phylogenet. Evol. 5, 5077.
  • [2]
    Silverman, D.N (1982) Carbonic anhydrase: oxygen-18 exchange catalyzed by an enzyme with rate-contributing proton-transfer steps. Methods Enzymol. 87, 732752.
  • [3]
    Silverman, D.N., Vincent, S.H (1983) Proton transfer in the catalytic mechanism of carbonic anhydrase. CRC Crit. Rev. Biochem. 14, 207255.
  • [4]
    Silverman, D.N., Lindskog, S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting proteolysis of water. Acc. Chem. Res. 21, 3036.
  • [5]
    Christianson, D.W., Fierke, C.A (1996) Carbonic anhydrase: evolution of the zinc binding site by nature and by design. Acc. Chem. Res. 29, 331339.
  • [6]
    Lindskog, S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74, 120.
  • [7]
    Reed, M.L. and Graham, D. (1981) Carbonic anhydrase in plants: distribution, properties, and possible physiological roles. In: Progress in Phytochemistry (Reinhold, L., Harborne, J.B. and Swain, T., Eds.), pp. 47–94. Pergamon Press, Oxford.
  • [8]
    Graham, D, Reed, M.L., Patterson, B.D., Hockley, D.G., Dwyer, M.R (1984) Chemical properties, distribution, and physiology of plant and algal carbonic anhydrases. Ann. NY Acad. Sci. 429, 222237.
  • [9]
    Tashian, R.E (1989) The carbonic anhydrases: widening perspectives on their evolution, expression and function. BioEssays 10, 186192.
  • [10]
    Badger, M.R., Price, G.D (1994) The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 369392.
  • [11]
    Sly, W.S., Hu, P.Y (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem. 64, 375401.
  • [12]
    Henry, R.P (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu. Rev. Physiol. 58, 523538.
  • [13]
    Nogradi, A (1998) The role of carbonic anhydrases in tumors. Am. J. Pathol. 153, 14.
  • [14]
    Smith, K.S., Jakubzick, C, Whittam, T.S., Ferry, J.G (1999) Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl. Acad. Sci. USA 96, 1518415189.
  • [15]
    Alber, B.E., Ferry, J.G (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA 91, 69096913.
  • [16]
    Alber, B.E., Ferry, J.G (1996) Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophila. J. Bacteriol. 178, 32703274.
  • [17]
    Meldrum, N.N., Roughton, F.J.W (1933) Carbonic anhydrase: its preparation and propeties. Nature 80, 113142.
  • [18]
    Stadie, W.C., O'Brien, H (1933) The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by the enzyme from red blood cells. J. Biochem. 103, 521529.
  • [19]
    Keilin, D, Mann, T (1939) Carbonic anhydrase. Nature 144, 442443.
  • [20]
    Keilin, D, Mann, T (1940) Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J. 34, 11631176.
  • [21]
    Keilin, D, Mann, T (1944) Activity of purified carbonic anhydrase. Nature 153, 107108.
  • [22]
    Bradfield, J.R.G (1947) Plant carbonic anhydrase. Nature 159, 467468.
  • [23]
    Neish, A.C (1939) Studies on chloroplasts. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300308.
  • [24]
    Veitch, F.P., Blankenship, L.C (1963) Carbonic anhydrase activity in bacteria. Nature 197, 7677.
  • [25]
    Adler, L, Brundell, J, Falkbring, S.O., Nyman, P.O (1972) Carbonic anhydrase from Neisseria sicca strain 6021 I. Bacterial growth and purification of the enzyme. Biochim. Biophys. Acta 284, 298310.
  • [26]
    Brundell, J, Falkbring, S.O., Nyman, P.O (1972) Carbonic anhydrase from Neisseria sicca strain 6021 II. Properties of the purified enzyme. Biochim. Biophys. Acta 284, 311323.
  • [27]
    Karrasch, M, Bott, M, Thauer, R.K (1989) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch. Microbiol. 151, 137142.
  • [28]
    Andersson, B, Nyman, P.O., Strid, L (1972) Amino acid sequence of human erythrocyte CA B. Biochem. Biophys. Res. Commun. 48, 670677.
  • [29]
    Lin, K.-T.D., Deutsch, H.F (1973) Human carbonic anhydrase. XI. The complete primary structure of carbonic anhydrase B. J. Biol. Chem. 248, 18851893.
  • [30]
    Henderson, L.E., Henriksson, D, Nyman, P.O (1973) Amino acid sequence of human erythrocyte carbonic anhydrase C. Biochem. Biophys. Res. Commun. 52, 13881394.
  • [31]
    Lin, K.-T.D., Deutsch, H.F (1974) Human carbonic anhydrase. XII. The complete primary structure of carbonic anhydrase C. J. Biol. Chem. 249, 23292337.
  • [32]
    Tashian, R.E., Carter, N.D (1976) Biochemical genetics of carbonic anhydrase. Adv. Hum. Genet. 7, 156.
  • [33]
    Tashian, R.E., Hewett-Emmett, D., Stroup, S.K., Goodman, M. and Yu, Y.-S.L. (1980) Evolution of structure and function in the carbonic anhydrase isozymes in mammals. In: Biophysics and Physiology of Carbon Dioxide (Bauer, G., Gross, G. and Bartels, H., Eds.), pp. 165–176. Springer, Berlin.
  • [34]
    Tashian, R.E., Venta, P.J., Nicewander, P.H., Hewett-Emmett, D (1990) Evolution, structure, and expression of the carbonic anhydrase multigene family. Prog. Clin. Biol. Res. 344, 159175.
  • [35]
    Tashian, R.E (1992) Genetics of the mammalian carbonic anhydrases. Adv. Genet. 30, 321356.
  • [36]
    Hewett-Emmett, D. and Tashian, R.E. (1991) Structure and evolutionary origins of the carbonic anhydrase multigene family. In: The Carbonic Anhydrases: Cellular Physiology and Molecular Genetics (Dodgson, S.J., Tashian, R.E., Gros, G. and Carter, N.D., Eds.), pp. 15–32. Plenum Press, New York.
  • [37]
    Mori, K, Ogawa, Y, Ebihara, K, Tamura, N, Tashiro, K, Kuwahara, T, Mukoyama, M, Sugawara, A, Ozaki, S, Tanaka, I, Nakao, K (1999) Isolation and characterization of CA XIV, a novel membrane-bound carbonic anhydrase from mouse kidney. J. Biol. Chem. 274, 1570115705.
  • [38]
    Kannan, K.K., Notstrand, B, Fridborg, K, Lovgren, S, Ohlsson, A, Petef, M (1975) Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-Å resolution. Proc. Natl. Acad. Sci. USA 72, 5155.
  • [39]
    Liljas, A, Kannan, K.K., Bergsten, P.C., Waara, I, Fridborg, K, Strandberg, B, Carlbom, U, Jarup, L, Lovgren, S, Petef, M (1972) Crystal structure of human carbonic anhydrase C. Nature New Biol. 235, 131137.
  • [40]
    Eriksson, A.E., Jones, T.A., Liljas, A (1988) Refined structure of human carbonic anhydrase II at 2.0 angstrom resolution. Protein Struct. Funct. Genet. 4, 274282.
  • [41]
    Hakansson, K, Carlsson, M, Svensson, L.A., Liljas, A (1992) The structure of native and apo carbonic anhydrase-II and some of its anion-ligand complexes. J. Mol. Biol. 227, 11921204.
  • [42]
    Eriksson, A.E., Liljas, A (1993) Refined structure of bovine carbonic anhydrase-III at 2.0 angstrom resolution. Protein Struct. Funct. Genet. 16, 2942.
  • [43]
    Stams, T, Nair, S.K., Okuyama, T, Waheed, A, Sly, W.S., Christianson, D.W (1996) Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8-Å resolution. Proc. Natl. Acad. Sci. USA 93, 1358913594.
  • [44]
    Boriack-Sjodin, P.A., Heck, R.W., Laipis, P.J., Silverman, D.N., Christianson, D.W (1995) Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-Å resolution: implications for catalytic proton transfer and inhibitor design. Proc. Natl. Acad. Sci. USA 92, 1094910953.
  • [45]
    Hewett-Emmett, D, Hopkins, P.J., Tashian, R.E., Czelusniak, J (1984) Origins and molecular evolution of the carbonic anhydrase isozymes. Ann. NY Acad. Sci. 429, 338358.
  • [46]
    Fukuzawa, H, Fujiwara, S, Yamamoto, Y, Dionisio-Sese, M.L., Miyachi, S (1990) cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii– regulation by environmental CO2 concentration. Proc. Natl. Acad. Sci. USA 87, 43834387.
  • [47]
    Fukuzawa, H, Fujiwara, S, Tachiki, A, Miyachi, S (1990) Nucleotide sequences of two genes CAH1 and CAH2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii. Nucleic Acids Res. 18, 64416442.
  • [48]
    Johansson, I.M., Forsman, C (1993) Kinetic studies of pea carbonic anhydrase. Eur. J. Biochem. 218, 439446.
  • [49]
    Bjorkbacka, H, Johansson, I.M., Skarfstad, E, Forsman, C (1997) The sulfhydryl groups of Cys 269 and Cys 272 are critical for the oligomeric state of chloroplast carbonic anhydrase from Pisum sativum. Biochemistry 36, 42874294.
  • [50]
    Guilloton, M.B., Korte, J.J., Lamblin, A.F., Fuchs, J.A., Anderson, P.M (1992) Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J. Biol. Chem. 267, 37313734.
  • [51]
    Fukuzawa, H, Suzuki, E, Komukai, Y, Miyachi, S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc. Natl. Acad. Sci. USA 89, 44374441.
  • [52]
    Kisker, C, Schindelin, H, Alber, B.E., Ferry, J.G., Rees, D.C (1996) A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 15, 23232330.
  • [53]
    Chirica, L.C., Elleby, B, Jonsson, B.H., Lindskog, S (1997) The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur. J. Biochem. 244, 755760.
  • [54]
    Nolling, J, Reeve, J.N (1997) Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. J. Bacteriol. 179, 899908.
  • [55]
    Smith, K.S., Ferry, J.G (1999) A plant type (β class) carbonic anhydrase from the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J. Bacteriol. 181, 62476253.
  • [56]
    Johansson, I.M., Forsman, C (1994) Solvent hydrogen isotope effects and anion inhibition of CO2 hydration catalysed by carbonic anhydrase from Pisum sativum. Eur. J. Biochem. 224, 901907.
  • [57]
    Rowlett, R.S., Chance, M.R., Wirt, M.D., Sidelinger, D.E., Royal, J.R., Woodroffe, M, Wang, Y.F., Saha, R.P., Lam, M.G (1994) Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry 33, 1396713976.
  • [58]
    Alber, B.E., Colangelo, C.M., Dong, J, Stalhandske, C.M.V., Baird, T.T., Tu, C, Fierke, C.A., Silverman, D.N., Scott, R.A., Ferry, J.G (1999) Kinetic and spectroscopic characterization of the gamma carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila. Biochemistry 38, 1311913128.
  • [59]
    Smith, K.S., Cosper, N.J., Stalhandske, C.M.V., Scott, R.A. and Ferry, J.G., Structural and kinetic characterization of an archaeal beta class carbonic anhydrase. Submitted for publication.
  • [60]
    Romanova, A.K., Rusinova, P.G., Kornitskaya, V.M (1972) On the participation of carbonic anhydrase in the assimilation of carbon dioxide in the chemosynthesis of Thiobacillus thiooxidans 58R. Dokl. Acad. Sci. USSR 203, 12091212.
  • [61]
    Ingle, R.K., Colman, B (1975) Carbonic anhydrase levels in blue-green algae. Can. J. Bot. 53, 23852387.
  • [62]
    Ingle, R.K., Colman, B (1976) The relationship between carbonic anhydrase activity and glycolate excretion in the blue-green alga Coccochloris peniocystis. Planta 128, 217223.
  • [63]
    Ivanovskii, R.N., Rodova, N.A (1977) Carbonanhydrase activity of phototrophic bacteria. Mikrobiologiya 46, 409413.
  • [64]
    Jahnke, L.C., Lyman, C, Hooper, A.B (1984) Carbonic anhydrase, carbon dioxide levels and growth of Nitrosomonas. Arch. Microbiol. 140, 291293.
  • [65]
    Braus-Stromeyer, S.A., Schnappauf, G, Braus, G.H., Gossner, A.S., Drake, H.L (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J. Bacteriol. 179, 71977200.
  • [66]
    Nafi, B.M., Miles, R.J., Butler, L.O., Carter, N.D., Kelly, C, Jeffery, S (1990) Expression of carbonic anhydrase in neisseriae and other heterotrophic bacteria. J. Med. Microbiol. 32, 17.
  • [67]
    Soltes-Rak, E, Mulligan, M.E., Coleman, J.R (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J. Bacteriol. 179, 769774.
  • [68]
    Altschul, S.F., Gish, W, Miller, W, Myers, E.W., Lipman, D.J (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403410.
  • [69]
    Smith, D.R., Doucette-Stamm, L.A., Deloughery, C, Lee, H, Dubois, J, Aldredge, T, Bashirzadeh, R, Blakely, D, Cook, R, Gilbert, K, Harrison, D, Hoang, L, Keagle, P, Lumm, W, Pothier, B, Qiu, D, Spadafora, R, Vicaire, R, Wang, Y, Wierzbowski, J, Gibson, R, Jiwani, N, Caruso, A, Bush, D, Safer, H, Patwell, D, Prabhakar, S, McDougall, S, Shimer, G, Goyal, A, Pietrokovski, S, Church, G.M., Daniels, C.J., Mao, J.-I, Rice, P, Nolling, J, Reeve, J.N (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179, 71357155.
  • [70]
    Gill, S.R., Fedorka-Cray, P.J., Tweten, R.K., Sleeper, B.P (1984) Purification and properties of the carbonic anhydrase of Rhodospirillum rubrum. Arch. Microbiol. 138, 113118.
  • [71]
    Yagawa, Y, Shiraiwa, Y, Miyachi, S (1984) Carbonic anhydrase from the blue-green alga (cyanobacterium) Anabaena variabilis. Plant Cell Physiol. 25, 775783.
  • [72]
    Sanders, E, Maren, T.H (1967) Inhibition of carbonic anhydrase in Neisseria: effects on enzyme activity and growth. Mol. Pharmacol. 3, 204215.
  • [73]
    MacLeod, M.N., DeVoe, I.W (1981) Localization of carbonic anhydrase in the cytoplasmic membrane of Neisseria sicca (strain 19). Can. J. Microbiol. 27, 8792.
  • [74]
    Black, C.G., Fyfe, J.A.M., Davies, J.K (1995) A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae. J. Bacteriol. 177, 19521958.
  • [75]
    Eriksson, A.E., Kylsten, P.M., Jones, T.A., Liljas, A (1988) Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCNG ion to the zinc at high pH. Protein Struct. Funct. Genet. 4, 283293.
  • [76]
    Forsman, C, Behravan, G, Jonsson, B.H., Liang, Z.W., Lindskog, S, Ren, X.L., Sandstrom, J, Wallgren, K (1988) Histidine 64 is not required for high CO2 hydration activity of human carbonic anhydrase II. FEBS Lett. 229, 360362.
  • [77]
    Tu, C.K., Silverman, D.N., Forsman, C, Jonsson, B.H., Lindskog, S (1989) Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 28, 79137918.
  • [78]
    Huang, S, Xue, Y, Sauer-Eriksson, E, Chirica, L, Lindskog, S, Jonsson, B.H (1998) Crystal structure of carbonic anhydrase from Neisseria gonorrhoeae and its complex with the inhibitor acetazolamide. J. Mol. Biol. 283, 301310.
  • [79]
    Xue, Y, Liljas, A, Jonsson, B.H., Lindskog, S (1993) Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. Protein Struct. Funct. Genet. 17, 93106.
  • [80]
    Merz, K.M (1990) Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases. J. Mol. Biol. 214, 799802.
  • [81]
    Lindahl, M, Svensson, L.A., Liljas, A (1993) Metal poison inhibition of carbonic anhydrase. Protein Struct. Funct. Genet. 15, 177182.
  • [82]
    Okuyama, T, Waheed, A, Kusumoto, W, Zhu, X.L., Sly, W.S (1995) Carbonic anhydrase IV: role of removal of C-terminal domain in glycosylphosphatidylinositol anchoring and realization of enzyme activity. Arch. Biochem. Biophys. 320, 315322.
  • [83]
    Murakami, H, Sly, W.S (1987) Purification and characterization of human salivary carbonic anhydrase. J. Biol. Chem. 262, 13821388.
  • [84]
    Anderson, P.M (1980) Purification and properties of the inducible enzyme cyanase. Biochemistry 19, 28822888.
  • [85]
    Anderson, P.M., Little, R.M (1986) Kinetic properties of cyanase. Biochemistry 25, 16211626.
  • [86]
    Anderson, P.M., Sung, Y.C., Fuchs, J.A (1990) The cyanase operon and cyanate metabolism. FEMS Microbiol. Rev. 7, 247252.
  • [87]
    Sung, Y.C., Fuchs, J.A (1988) Characterization of the cyn operon in Escherichia coli K12. J. Biol. Chem. 263, 1476914775.
  • [88]
    Kozliak, E.I., Guilloton, M.B., Gerami-Nejad, M, Fuchs, J.A., Anderson, P.M (1994) Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase. J. Bacteriol. 176, 57115717.
  • [89]
    Shoaf, W.T., Jones, M.E.L (1970) Carbonic anhydrase of microorganisms. I. An enzyme from baker's yeast which catalyzes the formation of carbamate from ammonium bicarbonate solution. Arch. Biochem. Biophys. 139, 130142.
  • [90]
    Guilloton, M.B., Lamblin, A.F., Kozliak, E.I., Gerami-Nejad, M, Tu, C, Silverman, D, Anderson, P.M., Fuchs, J.A (1993) A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli. J. Bacteriol. 175, 14431451.
  • [91]
    Kozliak, E.I., Fuchs, J.A., Guilloton, M.B., Anderson, P.M (1995) Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate. J. Bacteriol. 177, 32133219.
  • [92]
    Neidhardt, F.C., Bloch, P.L., Smith, D.F (1974) Culture medium for enterobacteria. J. Bacteriol. 119, 736747.
  • [93]
    Repaske, R, Clayton, M.A (1978) Control of Escherichia coli growth by CO2. J. Bacteriol. 117, 652659.
  • [94]
    Charles, H.P., Roberts, G.A (1968) Carbon dioxide as a growth factor for mutants of Escherichia coli. J. Gen. Microbiol. 51, 211224.
  • [95]
    Valdivia, R.H., Falkow, S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277, 20072011.
  • [96]
    Aizawa, K, Miyachi, S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol. Rev. 39, 215233.
  • [97]
    Coleman, J.R (1991) The molecular and biochemical analyses of CO2-concentrating mechanisms in cyanobacteria and microalgae. Plant Cell Environ. 14, 861867.
  • [98]
    Kaplan, A, Schwarz, R, Lieman-Hurwitz, J, Reinhold, L (1991) Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol. 97, 851856.
  • [99]
    Price, G.D., Sultemeyer, D, Klughammer, B, Ludwig, M, Badger, M.R (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins and recent advances. Can. J. Bot. 76, 9731002.
  • [100]
    Kaplan, A, Reinhold, L (1999) CO2 concentrating mechanism in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 539570.
  • [101]
    Badger, M.R (1980) Kinetic properties of ribulose 1,5-biphosphate carboxylase/oxygenase from Anabaena variabilis. Arch. Biochem. Biophys. 231, 233242.
  • [102]
    Sultemeyer, D, Schmidt, C, Fock, H.P (1993) Carbonic anhydrase in higher plants and aquatic microorganisms. Physiol. Plant. 88, 179190.
  • [103]
    Bedu, S, Joset, F (1991) Studies on the carbonic anhydrase activity in Synechocystis PCC6803 wild type and an acetazolamide-resistant mutant. Can. J. Bot. 69, 11031108.
  • [104]
    Bedu, S., Laurent, B. and Joset, F. (1992) Membraneous and soluble carbonic anhydrase activity in a cyanoabacterium. In: Research in Photosynthesis (Murata, N., Ed.), pp. 819–822. Kluwer Academic, Dordrecht.
  • [105]
    Price, G.D., Coleman, J.R., Badger, M.R (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol. 100, 784793.
  • [106]
    Miller, A.G., Espie, G.S., Canvin, D.T (1990) Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review. Can. J. Bot. 68, 12911302.
  • [107]
    Miller, A.G., Espie, G.S., Canvin, D.T (1991) Active CO2 transport in cyanobacteria. Can. J. Bot. 69, 925935.
  • [108]
    Espie, G.S., Miller, A.G., Canvin, D.T (1991) High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625. Plant Physiol. 97, 943953.
  • [109]
    Espie, G.S., Miller, A.G., Kandasami, R.A., Canvin, D.T (1991) Active HCO3 transport in cyanobacteria. Can. J. Bot. 69, 936944.
  • [110]
    Salon, C, Mir, N.A., Canvin, D.T (1996) Influx and efflux of inorganic carbon in Synechococcus UTEX 625. Plant Cell Environ. 19, 247259.
  • [111]
    Price, G.D., Badger, M.R (1989) Ethoxyzolamide inhibition of CO2 uptake in the cyanobacterium Synechococcus PCC7942 without apparent inhibition of internal carbonic anhydrase activity. Plant Physiol. 89, 3743.
  • [112]
    Price, G.D., Badger, M.R (1989) Ethoxyzolamide inhibition of CO2-dependent photosynthesis in the cyanobacterium Synechococcus PCC7942. Plant Physiol. 89, 4450.
  • [113]
    Fridlyand, L, Kaplan, A, Reinhold, L (1996) Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism. Biosystems 44, 229238.
  • [114]
    Johnson, S.L., Morrison, D.L (1972) Kinetics and mechanism of decarboxylation of N-arylcarbamates. Evidence for kinetically important zwitterionic carbonic acid species of short lifetime. J. Am. Chem. Soc. 94, 13241334.
  • [115]
    Fujita, E, Szalda, D.J., Creutz, C, Sutin, N (1988) Carbon dioxide activation: thermodynamics of CO2 binding and the involvement of two cobalt centers in the reduction of CO2 by a cobalt(I) macrocycle. J. Am. Chem. Soc. 110, 48704871.
  • [116]
    Gambaratto, S, Arena, F, Floriani, C, Zanazzi, P.F (1982) Carbon dioxide fixation: bifunctional complexes containing acidic and basic sites working as reversible carriers. J. Am. Chem. Soc. 104, 50825092.
  • [117]
    Li, Q, Canvin, D.T (1998) Energy sources for HCO3 and CO2 transport in air-grown cells of Synechococcus UTEX 625. Plant Physiol. 116, 11251132.
  • [118]
    Espie, G.S., Kandasamy, R.A (1994) Monensin inhibition of Na+-dependent HCO3 transport distinguishes it from Na+-independent HCO3 transport and provides evidence for Na+/HCO3 symport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol. 104, 14191428.
  • [119]
    Bonfil, D.J., Ronen-Tarazi, M, Sultemeyer, D, Lieman-Hurwita, J, Schatz, D, Kaplan, A (1998) A putative HCO3 transporter in the cynaobacterium Syenchococcus sp. strain PCC 7942. FEBS Lett. 430, 236240.
  • [120]
    Okamura, M, Price, D, Badger, M, Ogawa, T, Omata, T. The cmpABCD genes of the cynaobacterium Synechococcus sp. PCC7942 encode a HCO3 transporter,. Plant Cell. Physiol. 38, supplement, 1997. 30
  • [121]
    Higgins, C.F (1992) ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67113.
  • [122]
    Sultmeyer, D, Klughammer, B, Badger, M.R., Price, G.D (1998) Fast induction of high affinity HCO3 transport in cynaobacteria. Plant Physiol. 116, 183192.
  • [123]
    Sultemeyer, D, Klughammer, B, Badger, M.R., Price, G.D (1998) Protein phosphorylation and its possible involvement in the induction of the high-affinity CO2 concentrating mechanism in cyanobacteria. Can. J. Bot. 76, 954961.
  • [124]
    Price, G.D., Badger, M.R (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol. 91, 505513.
  • [125]
    Price, G.D., Badger, M.R (1991) Evidence for the role of carboxysomes in the cyanobacterial CO2-concentrating mechanism. Can. J. Bot. 69, 963973.
  • [126]
    Shively, J.M., English, R.S (1991) The carboxysome, a prokaryotic organelle: a minireview. Can. J. Bot. 69, 957962.
  • [127]
    So, A.K.C., Van Spall, H.G.C., Coleman, J.R., Espie, G.S (1998) Catalytic exchange of 18O from 13C18O-labelled CO2 by wild type cells and ecaA, ecaB, and ccaA mutants of the cyanobacteria Synechococcus PCC7942 and Synechocystis PCC6803. Can. J. Bot. 76, 11531160.
  • [128]
    Badger, M.R., Gallagher, A (1987) Adaptation of photosynthetic CO2 and HCO3 accumulation by thr cynaobacterium Synechococcus PCC6301 to growth at different inorganic carbon concnetrations. Aust. J. Plant Physiol. 14, 189201.
  • [129]
    Mayo, W.P., Williams, T.G., Birch, D.G., Turpin, D.H (1986) Photosynthetic adaptation by Synechococus leopoliensis in response to exogenous dissolved inorganic carbon. Plant Physiol. 80, 10381040.
  • [130]
    Price, G.D., Badger, M.R (1989) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942. Two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysomes. Plant Physiol. 91, 514525.
  • [131]
    Badger, M.R., Price, G.D., Yu, J.W (1991) Selection and analysis of mutants of the CO2-concentrating mechanism in cyanobacteria. Can. J. Bot. 69, 974983.
  • [132]
    So, A.K., Espie, G.S (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol. Biol. 37, 205215.
  • [133]
    Stemler, A.J (1997) The case for chloroplast thylakoid carbonic anhydrase. Physiol. Plant. 99, 348353.
  • [134]
    Price, G.D., Howitt, S.M., Harrison, K, Badger, M.R (1993) Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J. Bacteriol. 175, 28712879.
  • [135]
    Li, L.-A, Gibson, J.L., Tabita, F.R (1993) The Rubisco activase (rca) gene is located downstream from rbcS in Anabaena sp. strain CA and is detected in other Anabaena/Nostoc strains. Plant Mol. Biol. 21, 753764.
  • [136]
    Bracey, M.H., Christiansen, J, Tovar, P, Cramer, S.P., Bartlett, S.G (1994) Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry 33, 1312613131.
  • [137]
    Hiltonen, T, Bjorkbacka, H, Forsman, C, Clarke, A.K., Samuelsson, G (1998) Intracellular beta-carbonic anhydrase of the unicellular green alga Coccomyxa. Cloning of the cDNA and characterization of the functional enzyme overexpressed in Escherichia coli. Plant Physiol. 117, 13411349.
  • [138]
    Vorholt, J.A., Thauer, R.K (1997) The active species of ‘CO2’ utilized by formylmethanofuran dehydrogenase from methanogenic Archaea. Eur. J. Biochem. 248, 919924.
  • [139]
    Nielsen, H, Engelbrecht, J, Brunak, S, von Heijne, G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 16.
  • [140]
    von Heijne, G (1985) Signal sequences. The limits of variation. J. Mol. Biol. 184, 99105.
  • [141]
    von Heijne, G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14, 46834690.
  • [142]
    Khalifah, R.G (1971) The carbon hydroxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isozymes B and C. J. Biol. Chem. 246, 25612573.
  • [143]
    Steiner, H, Jonsson, B.H., Lindskog, S (1976) The catalytic mechanism of human carbonic anhydrase C: inhibition of CO2 hydration and ester hydrolysis by HCO3. FEBS Lett. 62, 1620.
  • [144]
    Bertini, I, Canti, G, Luchinat, C, Scozzafava, A (1978) Characterization of cobalt(II) bovine carbonic anhydrase and of its derivatives. J. Am. Chem. Soc. 100, 48734877.
  • [145]
    Ren, X, Sandstrom, A, Lindskog, S (1988) Kinetics, anion binding and mechanism of Co(II)-substituted bovine muscle carbonic anhydrase. Eur. J. Biochem. 173, 7378.
  • [146]
    Hakansson, K, Wehnert, A (1992) Structure of cobalt carbonic anhydrase complexed with bicarbonate. J. Mol. Biol. 228, 12121218.
  • [147]
    Raetz, C.R.H., Roderick, S.L (1995) A left-handed parallel β helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270, 9971000.
  • [148]
    Beaman, T.W., Binder, D.A., Blanchard, J.S., Roderick, S.L (1997) Three-dimensional structure of tetrahydrodipicolinate N-succinyltransferase. Biochemistry 36, 489494.
  • [149]
    Beaman, T.W., Sugantino, M, Roderick, S.L (1998) Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa. Biochemistry 37, 66896696.
  • [150]
    Vaara, M (1992) Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli, consist of a six-residue periodicity theme. FEMS Microbiol. Lett. 97, 249254.
  • [151]
    Vuorio, R, Harkonen, T, Tolvanen, M, Vaara, M (1994) The novel hexapeptide motif found in the acetyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. FEBS Lett. 337, 289292.
  • [152]
    Tripp, B.C. and Ferry, J.G., A structure–function study of a proton transport pathway in the gamma class carbonic anhydrase from Methanosarcina thermophila. Submitted for publication.
  • [153]
    Iverson, T.M., Alber, B.E., Kisker, C., Ferry, J.G. and Rees, D.C., A closer look at the active site of γ-carbonic anhydrases: high resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Submitted for publication.
  • [154]
    Krebs, J.F., Fierke, C.A., Alexander, R.S., Christianson, D.W (1991) Conformational mobility of His-64 in the Thr-200-Ser mutant of human carbonic anhydrase II. Biochemistry 30, 91539160.
  • [155]
    Nair, S.K., Christianson, D.W (1991) Structural properties of human carbonic anhydrase II at pH 9.5. Biochem. Biophys. Res. Commun. 181, 579584.
  • [156]
    Nair, S.K., Christianson, D.W (1991) Unexpected pH-dependent conformation of His-64, the proton shuttle of carbonic anhydrase II. J. Am. Chem. Soc. 113, 94559458.
  • [157]
    Ferry, J.G (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6, 2535.
  • [158]
    Kumar, S, Tamura, K, Nei, M (1994) MEGA: molecular evolutionary genetic analysis. Comput. Appl. Biosci. 10, 189191.
  • [159]
    Sjoblom, B, Elleby, B, Wallgren, K, Jonsson, B.H., Lindskog, S (1996) Two point mutations convert a catalytically inactive carbonic anhydrase-related protein (CARP) to an active enzyme. FEBS Lett. 398, 322325.
  • [160]
    Kamo, T, Shimogawara, K, Fukuzawa, H, Muto, S, Miyachi, S (1990) Subunit constitution of carbonic anhydrase from Chlamydomonas reinhardtii. Eur. J. Biochem. 192, 557562.
  • [161]
    Engstrand, C, Forsman, C, Liang, Z, Lindskog, S (1992) Proton transfer roles of lysine 64 and glutamic acid 64 replacing histidine 64 in the active site of human carbonic anhydrase II. Biochim. Biophys. Acta 1122, 321326.
  • [162]
    Okuyama, T, Sato, S, Zhu, X.L., Waheed, A, Sly, W.S (1992) Human carbonic anhydrase IV-cDNA cloning, sequence comparison, and expression in COS cell membranes. Proc. Natl. Acad. Sci. USA 89, 13151319.
  • [163]
    Eriksson, M, Karlsson, J, Ramazanov, Z, Gardestrom, P, Samuelsson, G (1996) Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 93, 1203112034.
  • [164]
    Hiltonen, T, Karlsson, J, Palmqvist, K, Clarke, A.K., Samuelsson, G (1995) Purification and characterisation of an intracellular carbonic anhydrase from the unicellular green alga Coccomyxa. Planta 195, 345351.
  • [165]
    Eichler, K, Bourgis, F, Buchet, A, Kleber, H.-P, Mandrand-Berthelot, M.-A (1994) Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol. Microbiol. 13, 775786.
  • [166]
    Jung, H, Jung, K, Kleber, H.-P (1989) Purification and properties of carnitine dehydratase from Escherichia coli: a new enzyme of carnitine metabolism. Biochim. Biophys. Acta 1003, 270276.
  • [167]
    Kleber, H.-P (1997) Bacterial carnitine metabolism. FEMS Microbiol. Lett. 147, 19.
  • [168]
    Olivera, E.R., Minambres, B, Garcia, B, Muniz, C, Moreno, M.A., Ferrandez, A, Diaz, E, Garcia, J.L., Luengo, J.M (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc. Natl. Acad. Sci. USA 95, 64196424.
  • [169]
    Martin, W, Muller, M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392, 3741.
  • [170]
    Moreira, D, Lopez-Garcia, P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntropic hypothesis. J. Mol. Evol. 47, 517530.
  • [171]
    Dimroth, P (1987) Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51, 320340.
  • [172]
    Dimroth, P (1990) Mechanisms of sodium transport in bacteria. Phil. Trans. R. Soc. Lond. B Biol. Sci. 326, 465477.
  • [173]
    Dimroth, P, Schink, B (1998) Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch. Microbiol. 170, 6977.
  • [174]
    Uffen, R.L (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc. Natl. Acad. Sci. USA 73, 32983302.
  • [175]
    Simpson, P.G. and Whitman, W.B. (1993) Anabolic pathways in methanogens. In: Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics (Ferry, J.G., Ed.), pp. 445–472. Chapman and Hall, London.
  • [176]
    Mukhopadhyay, B, Stoddard, S.F., Wolfe, R.S (1998) Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain deltaH. J. Biol. Chem. 273, 51555166.
  • [177]
    Parkkila, A.-K, Scarim, A.L., Parkkila, S, Waheed, A, Corbett, J.A., Sly, W.S (1998) Expression of carbonic anhydrase V in pancreatic beta cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J. Biol. Chem. 273, 2462024623.
  • [178]
    Hatch, M.D., Burnell, J.N (1990) Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol. 93, 380383.
  • [179]
    Pocker, Y, Meany, J.E (1965) The catalytic versatility of carbonic anhydrase from erythrocytes: the enzyme-catalyzed hydration of acetaldehyde. J. Am. Chem. Soc. 87, 18091811.
  • [180]
    Pocker, Y, Stone, J.T (1965) The catalytic versatility of erythrocyte carbonic anhydrase: the enzyme-catalyzed hydrolysis of ρ-nitrophenyl acetate. J. Am. Chem. Soc. 87, 54975498.
  • [181]
    Henkart, P, Guidotti, G, Edsall, J.T (1968) Catalysis of the hydrolysis of 1-fluro-2,4-dinitrobenzene by carbonic anhydrase. J. Biol. Chem. 243, 24472449.
  • [182]
    Whitney, P.L., Folsch, G, Nyman, P.O., Malmstrom, B.G (1967) Inhibition of human erythrocyte carbonic anhydrase B by chloroacetyl sulfonamides with labeling of the active site. J. Biol. Chem. 242, 42064211.
  • [183]
    Tu, C.K., Thomas, H.G., Wynns, G.C., Silverman, D.N (1986) Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle. J. Biol. Chem. 261, 1010010103.
  • [184]
    Kaiser, E.T., Lo, K.W (1969) The carbonic anhydrase catalyzed hydrolysis of 2-hydroxy-5-nitro-ω-toluenesulfonic acid sultone. J. Am. Chem. Soc. 91, 49124918.
  • [185]
    Pullan, L.M., Noltmann, E.A (1985) Specific arginine modification at the phosphatase site of muscle carbonic anhydrase. Biochemistry 24, 635640.
  • [186]
    Thompson, R.B., Maliwal, B.P., Feliccia, V.L., Fierke, C.A., McCall, K (1998) Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a ‘reagentless’ enzyme transducer. Anal. Chem. 70, 47174723.
  • [187]
    Thompson, R.B., Maliwal, B.P., Fierke, C.A (1999) Selectivity and sensitivity of fluorescence lifetime-based metal ion biosensing using a carbonic anhydrase transducer. Anal. Biochem. 267, 185195.
  • [188]
    Steiner, H, Jonsson, B.H., Lindskog, S (1975) The catalytic mechanism of carbonic anhydrase. Hydrogen-isotope effects on the kinetic parameters of the human C isoenzyme. Eur. J. Biochem. 59, 253259.
  • [189]
    Bjorkbacka, H, Johansson, I.M., Forsman, C (1999) Possible roles for His 208 in the active-site region of chloroplast carbonic anhydrase from Pisum sativum. Arch. Biochem. Biophys. 361, 1724.
  • [190]
    Thompson, J.D., Gibson, T.J., Plewniak, F, Jeanmougin, F, Higgins, D.J (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 48764882.