SEARCH

SEARCH BY CITATION

References

  • [1]
    Robinson, J.P. (1999) Current Protocols in Cytometry. John Wiley and Sons, New York.
  • [2]
    Shapiro, H.M. (1995) Practical Flow Cytometry, 3rd edn., pp. 412–425. John Wiley and Sons, New York.
  • [3]
    Porter, J., Deere, D., Pickup, R., Edwards, C. (1996) Fluorescent probes in flow cytometry: new insights into environmental bacteriology. Cytometry 23, 9196.
  • [4]
    Sieracki, M.E., Haugen, E.M., Cucci, T.L. (1995) Overestimation of heterotrophic bacteria in the Sargasso Sea: direct evidence by flow cytometry and imaging cytometry. Deep Sea Res. 42, 13991409.
  • [5]
    Caldwell, D.E., Korber, D.R., Lawrence, J.R. (1992) Confocal laser microscopy and digital image analysis in microbial ecology. Adv. Microb. Ecol. 12, 124.
  • [6]
    Demandolox, D., Davoust, J. (1995) Multicolor analysis in confocal immunofluorescence microscopy. J. Trace Microprobe Tech. 133, 217225.
  • [7]
    Pernthaler, J., Alfreider, A., Posch, T., Andreatta, S., Psenner, R. (1997) In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria). Appl. Environ. Microbiol. 63, 47784783.
  • [8]
    Davey, H.M., Kell, D.B. (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641696.
  • [9]
    Porter, J., Deere, D., Hardman, M., Edwards, C., Pickup, R. (1997) Go with the flow – use of flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 24, 93101.
  • [10]
    Gasol, J.M. and del Giorgio, P.A. (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. (in press).
  • [11]
    Haugland, R.P. (1996) Handbook of Fluorescent Probes and Research Chemicals, 6th edn. Molecular Probes, Eugene, OR.
  • [12]
    Jernaes, M.W., Steen, H.B. (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17, 302309.
  • [13]
    Glaasker, E., Konings, W.N., Poolman, B. (1996) The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes. Mol. Membr. Biol. 13, 173181.
  • [14]
    Draper, M.P., Martell, R.L., Levy, S.B. (1997) Active efflux of the free acid form of the fluorescent dye 2′,7′-bis(2-carboxyethyl)-5-carboxyfluorescein in multidrug-resistance-protein-overexpressing murine and human leukemia cells. Eur. J. Biochem. 243 (6), 219224.
  • [15]
    Sedgwick, E.G., Bragg, P.D. (1996) The role of efflux systems and the cell envelope in fluorescence changes of the lipophilic cation 2-(4-dimethylaminostyryl)-1-ethylpyridinium in Escherichia coli. Biochim. Biophys. Acta 1278, 205212.
  • [16]
    Valdivia, R.H., Falkow, S. (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22, 367378.
  • [17]
    Miyauchi, S., Komatsubara, M., Kamo, N. (1992) In archaebacteria, there is a doxorubicin efflux pump similar to mammalian P-glycoprotein. Biochim. Biophys. Acta 1110, 144150.
  • [18]
    Molenaar, D., Abee, T., Konings, W.N. (1991) Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator. Biochim. Biophys. Acta 1115, 7583.
  • [19]
    Molenaar, D., Bolhuis, H., Abee, T., Poolman, B., Konings, W.N. (1992) The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. J. Bacteriol. 174, 31183124.
  • [20]
    Nebe-von Caron, G., Badley, R.A. (1995) Viability assessment of bacteria in mixed populations using flow-cytometry. J. Microsc. 179, 5566.
  • [21]
    Ückert, J., Breeuwer, P., Abee, T., Stephens, P., Nebe-von Caron, G., ter Steeg, P.F., Ueckert, J. (1995) Flow cytometry applications in physiological study and detection of foodborne microorganisms. Int. J. Food Microbiol. 28, 317326.
  • [22]
    Midgley, M., Iscandar, N.S., Parish, M., Dawes, E.A. (1986) A fluorescent-probe for a phosphonium ion efflux system in bacteria. FEMS Microbiol. Lett. 34, 187190.
  • [23]
    Nebe-von Caron, G., Stephens, P., Badley, R.A. (1998) Assessment of bacterial viability status by flow cytometry and single cell sorting. J. Appl. Microbiol. 84, 988998.
  • [24]
    Comas, J., Vives-Rego, J. (1998) Enumeration, viability and heterogeneity in Staphylococcus aureus cultures by flow cytometry. J. Microbiol. Methods 32, 4553.
  • [25]
    Gasol, J.M., Morán, X.A.G. (1999) Effects of filtration on bacterial activity and picoplankton community structure as assessed by flow cytometry. Aquat. Microb. Ecol. 16, 251264.
  • [26]
    Troussellier, M., Courties, C., Lebaron, P., Servais, P. (1999) Flow cytometric discrimination of bacterial populations in seawater based on SYTO13 staining of nucleic acids. FEMS Microbiol. Ecol. 29, 319330.
  • [27]
    Vives-Rego, J., Guindualin, T., Vazquez-Domingues, E., Gasol, J.M., López-Amorós, R., Vaqué, D., Comas, J. (1999) Assessment of the effects of nutrients and pollutants on coastal bacterioplankton by flow cytometry and SYTO-13 staining. Microbios 98, 7185.
  • [28]
    Comas, J., Vives-Rego, J. (1999) Use of calcein and SYTO-13 to assess cell cycle phases and osmotic shock effects on Escherichia coli and Staphylococcus aureus by flow cytometry. J. Microbiol. Methods 34, 215221.
  • [29]
    López-Amorós, R., Comas, J., García, M.T., Vives-Rego, J. (1998) Use of the 5-cyano-2,3-ditolyl tetrazolium chloride reduction test to assess respiring marine bacteria and grazing effects by flow cytometry during linear alkylbenzene sulfonate degradation. FEMS Microbiol. Ecol. 27, 3342.
  • [30]
    Troussellier, M., Courties, C., Zettelmaier, S. (1995) Flow cytometric analysis of coastal lagoon bacterioplankton and picophytoplankton: fixation and storage effects. Estuar. Coast. Shelf Sci. 40, 621633.
  • [31]
    Olson, R.J., Zettler, E.R., Chisholm, S.W., Dusenberry, J.A. (1991) Advances in oceanography through flow cytometry. NATO ASI Ser. G. 27, 351399.
  • [32]
    Chisholm, S.W., Frankel, S.L., Goericke, R., Olson, R.J., Waterbury, J.B., West-Johnsrud, L., Zettler, E.R. (1992) Prochlorococcus marinus nov. gen. nov. sp. an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297300.
  • [33]
    Vaulot, D., Partenski, F., Neveux, J., Mantoura, R.F.C., Llewellyn, C. (1990) Winter presence of prochlorophytes in surface waters of the north-western Mediterranean Sea. Limnol. Oceanogr. 35, 11561164.
  • [34]
    Courties, C., Vaquer, A., Troussellier, M., Lautier, J., Chretiennot-Dinet, M.J., Neveux, J., Machado, C., Claustre, H. Smallest eukaryotic organism,. Nature. 370, 1994. 255
  • [35]
    Veldhuis, M.J.W. (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J. Phycol. 33, 527541.
  • [36]
    Monger, B.M., Landry, M.R. (1993) Flow cytometric analysis of marine bacteria with Hoechst 33342. Appl. Environ. Microbiol. 59, 905911.
  • [37]
    Bernander, R., Stokke, T., Boye, E. (1998) Flow cytometry of bacterial cells: comparison between different flow cytometers and different DNA stains. Cytometry 31, 2936.
  • [38]
    Guindulain, T., Comas, J., Vives-Rego, J. (1997) Use of nucleic acid dyes SYTO-13, TOTO-1, and YOYO-1 in the study of Escherichia coli and marine prokaryotic populations by flow cytometry. Appl. Environ. Microbiol. 63, 46084611.
  • [39]
    del Giorgio, P.A., Bird, D.F., Prairie, Y.T., Planas, D. (1996) Flow cytometric determination of bacterial abundance in lake plankton with the the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41, 783789.
  • [40]
    Vives-Rego, J., Guindulain, T., Vàzquez-Domínguez, E., Gasol, J.M., López-Amoros, R., Vaqué, D., Comas, J. (1999) Assessment of the effects of nutrients and pollutants on coastal bacteriolpankton by flow cytometry and SYTO-13 staining. Microbios 98, 7185.
  • [41]
    Marie, D., Vaulot, D., Partensky, F. (1996) Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and Pico Green for flow cytometry analysis of marine prokaryotes. Appl. Environ. Microbiol. 62, 16491655.
  • [42]
    Li, W.K.W., Jellet, J.F., Dickie, P.M. (1995) DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol. Oceanogr. 40, 14851495.
  • [43]
    Lebaron, P., Parthuisot, N., Catala, P. (1998) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol. 64, 17251730.
  • [44]
    Gasol, J.M., Zweifel, U.L., Peters, F., Furhman, J.A., Haggstrom, A. (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 65, 44754483.
  • [45]
    Lim, E.L., Amaral, L.A., Caron, D.A., Delong, E.F. (1993) Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl. Environ. Microbiol. 59, 16471655.
  • [46]
    Rice, J., Sleigh, M.A., Burkill, P.H., Tarran, G.A., O'Connor, C.D., Zubkov, M.V. (1997) Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. Environ. Microbiol. 63, 938944.
  • [47]
    Christaki, U., Jacquet, S., Dolan, J.R., Rassoulzadegan, F. (1999) Growth and grazing on Prochlorococcus and Synechococcus by two marine cilliates. Limnol. Oceanogr. 44, 5261.
  • [48]
    Noble, R.T., Fuhrman, J.A. (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113118.
  • [49]
    Xenopoulos, M., Bird, D.F. (1997) Virus a la sauce Yo-Pro: microwave-enhanced staining for counting viruses by epifluorescence microscopy. Limnol. Oceanogr. 42, 16481650.
  • [50]
    Marie, D., Brussaard, C.P.D., Thyrhaug, R., Bratbak, G., Vaulot, D. (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol. 65, 4552.
  • [51]
    Koch, A.L., Robertson, B.R., Button, K. (1996) Deduction of the cell volume and mass from forward scatter intensity of bacteria analysed by flow cytometry. J. Microbiol. Methods 27, 4961.
  • [52]
    Heldal, M., Morland, S., Bratbak, G., Riemann, B. (1994) Determination of bacterial cell number and cell volume by means of flow cytometry, transmission electron microscopy, and epifluorescence microscopy. J. Microbiol. Methods 20, 255263.
  • [53]
    Christensen, H., Bakken, I.R., Olsen, R.A. (1993) Soil bacterial-DNA and biovolume profiles measured by flow cytometry. FEMS Microbiol. Ecol. 102, 129140.
  • [54]
    Button, D.K., Robertson, B.R., Jüttner, F. (1996) Microflora of a subalpine lake: bacterial populations, size and DNA distributions, and their dependence on phosphate. FEMS Microbiol. Ecol. 21, 87101.
  • [55]
    Christensen, H., Olsen, R.A., Bakken, I.R. (1995) Flow cytometric measurements of cell volumes and DNA contents during culture of indigenous soil bacteria. Microb. Ecol. 29, 4962.
  • [56]
    Diaper, J.P., Edwards, C. (1994) Survival of Staphylococcus aureus in lakewater monitored by flow cytometry. Microbiology 140, 3542.
  • [57]
    Vives-Rego, J., López-Amorós, R., Comas, J. (1994) Flow cytometric narrow-angle light scatter and cell size during starvation of Escherichia coli in artificial sea water. Lett. Appl. Microbiol. 19, 374376.
  • [58]
    Nebe-von Caron, G. and Badley, R.A. (1996) Bacterial characterization by flow cytometry. In: Flow Cytometry in Applications in Cell Culture (Al-Rubeai, M. and Emery, A.N., Eds.), pp. 257–290. Marcel Dekker, New York.
  • [59]
    Robertson, B.R., Button, D.K., Koch, A.L. (1998) Determination of the biomass of small bacteria and low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl. Environ. Microbiol. 64, 39003909.
  • [60]
    Julià, O., Comas, J., Vives-Rego, J. (2000) Second-order functions are the simplest correlations between flow cytometric light scatter and bacterial diameter. J. Microbiol. Methods 40, 5761.
  • [61]
    Barcina, Y., Lebaron, P., Vives-Rego, J. (1997) Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol. Ecol. 23, 19.
  • [62]
    Roszak, D.B., Colwell, R.R. (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51, 365379.
  • [63]
    Kjelleberg, S. (1993) Starvation in Bacteria. Plenum Press, New York.
  • [64]
    Servais, P., Vives-Rego, J. and Billen, G. (1992) Survival and mortality of bacteria in natural environment. In: Release of Genetically Engineered and Other Microorganisms (Fry, J.C. and Day, M.J., Eds.), pp. 100–119. Cambridge University Press, Cambridge.
  • [65]
    Pore, R.S. (1994) Antibiotic susceptibility testing by flow-cytometry. J. Antimicrob. Chemother. 34, 613627.
  • [66]
    López-Amorós, R., Comas, J., Vives-Rego, J. (1995) Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using Rhodamine 123, propidium iodide and oxonol. Appl. Environ. Microbiol. 61, 25212526.
  • [67]
    Comas, J., Vives-Rego, J. (1997) Assessment of gramicidin, formaldehyde and surfactants effect on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes. Cytometry 29, 5864.
  • [68]
    Lopez-Amoros, R., Castel, S., Comas-Riu, J., Vives-Rego, J. (1997) Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4, propidium iodide, and CTC. Cytometry 29 (3), 18.
  • [69]
    Matsunaga, T., Okochi, M., Nakasonon, S. (1995) Direct count of bacteria using fluorescent dyes: application to assessment of electrochemcial disinfection. Anal. Chem. 67, 44874490.
  • [70]
    Sgorbati, S., Barbesti, S., Citterio, S., Bestetti, G., DeVecchi, R. (1996) Characterization of number, DNA content, viability and cell size of bacteria from natural environments using DAPI/PI dual staining and flow cytometry. Minerva Biotecnol. 8, 915.
  • [71]
    Bailey, J.E., Fazel-Madjlessi, J., McQuitty, D.N., Lee, Y.N., Allred, J.C., Oro, J.A. (1977) Characterization of bacterial growth by means of flow microfluorometry. Science 198, 11751176.
  • [72]
    Pau, A.S., Cowles, J.R., Oro, J. (1977) Flow-microfluorometric analysis of Escherichia coli, Rhizobium meliloti, and Rhizobium japonicum at different stages of the growth cycle. Can. J. Microbiol. 23, 11651169.
  • [73]
    Hutter, K.J., Oldiges, H. (1980) Alterations of proliferating microorganisms by flow cytometric measurements after heavy metal intoxication. Ecotoxicol. Environ. Saf. 4, 5776.
  • [74]
    Steen, H.B., Boye, E., Skarstad, K., Bloom, B., Godal, T., Mustafa, S. (1982) Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry 2, 249257.
  • [75]
    Ackermann, J.U., Müller, S., Lösche, A., Bley, T., Babel, W. (1995) Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumulate PHB. J. Biotechnol. 39, 920.
  • [76]
    Joux, F., Lebaron, P. (1997) Ecological implications of an improved direct viable count method for aquatic bacteria. Appl. Environ. Microbiol. 63, 36433647.
  • [77]
    Kogure, K., Simidu, U., Taga, N. (1979) A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415420.
  • [78]
    Barer, M.R., Gribbon, L.T., Harwood, C.R., Nwoguh, C.E. (1993) The viable but non-culturable hypothesis and medical bacteriology. Rev. Med. Microbiol. 4, 183191.
  • [79]
    Cohen, C.Y., Sahar, E. (1989) Rapid flow cytometric bacterial detection and determination of susceptibility to amikacin in body fluids and exudates. J. Clin. Microbiol. 27, 12501256.
  • [80]
    Ueckert, J.E., Nebe-von Caron, G., Bos, A.P., ter Steeg, P.F. (1997) Flow cytometric analysis of Lactobacillus plantarum to monitor lag times, cell division and injury. Lett. Appl. Microbiol. 25, 295299.
  • [81]
    Héchard, Y., Jayat, C., Letellier, F., Julien, R., Cenatiempo, Y., Ratinaud, M.H. (1992) On-line visualization of the competitive behavior of antagonistic bacteria. Appl. Environ. Microbiol. 58, 37843786.
  • [82]
    Drevets, D.A., Elliot, A.M. (1995) Fluorescence labeling of bacteria for studies of intracellular pathogenesis. J. Immunol. Methods 187, 6979.
  • [83]
    Deere, D., Porter, J., Edwards, C., Pickup, R. (1995) Evaluation of the suitability of bis-(1,3-dibutylbarbituric acid) trimethine oxonol, (diBA-C4), for the flow cytometric assessment of bacterial viability. FEMS Microbiol. Lett. 130 (3), 165169.
  • [84]
    Jepras, R.I., Paul, F.E., Pearson, S.C., Wilkinson, M.J. (1997) Rapid assessment of antibiotic effects on Escherichia coli by bis-(1,3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob. Agents Chemother. 41, 20012005.
  • [85]
    López-Amorós, R., Mason, D.J., Lloyd, D. (1995) Use of two oxonols and a fluorescent tetrazolium dye to monitor starvation of Escherichia coli in seawater by flow cytometry. J. Microbiol. Methods 22, 165176.
  • [86]
    Kaprelyants, A.S., Kell, D.B. (1992) The use of 5-cyano-2,3-ditolyl tetrazolium chloride and flow cytometry for the visualization of respiratory activity in individual cells of Micrococcus luteus. J. Microbiol. Methods 17, 115122.
  • [87]
    Mason, D.J., López-Amorós, R., Allman, R., Stark, J.M., Lloyd, D. (1995) The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria. J. Appl. Bacteriol. 78, 309315.
  • [88]
    Shapiro, H.M. (1982) Cytological Assay Procedure. U.S. Patent No. 4,343,782.
  • [89]
    Nebe-von Caron, G., Anderson, W. Germination and outgrowth of spores characterized by fluorescent probes and flow cytometry,. Cytometry. 8, Suppl., 1996. 115
  • [90]
    Novo, D., Perlmutter, N.G., Hunt, R.H., Shapiro, H.M. (1999) Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35, 5563.
  • [91]
    Fuller, A.J., Golden, J., McDougald, L.R. (1995) Flow cytometric analysis of the response of Eimera tenella (coccoidia) sporocoites to coccidiocidal effects of ionophores. J. Parasitol. 81, 985988.
  • [92]
    Bownds, S.E., Kurzynski, T.A., Norden, M.A., Dufek, J.L., Schell, R.F. (1996) Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. J. Clin. Microbiol. 34, 13861390.
  • [93]
    Hutter, K.J., Muller, S., Herber, M. (1996) Biomonitoring of working yeasts in practice by the fluorescence optical method. Third notification: functionality tests of yeast cells. Mon.schr. Brauwiss. 49, 164170.
  • [94]
    Jacobsen, C.N., Rasmussen, J., Jakobsen, M. (1997) Viability staining and flow cytometric detection of Listeria monocytogenes. J. Microbiol. Methods 28, 3543.
  • [95]
    Yamaguchi, N., Nasu, M. (1997) Flow cytometric analysis of bacterial respiratory and enzymatic activity in the natural aquatic environment. J. Appl. Microbiol. 83, 4352.
  • [96]
    Diaper, J.P., Edwards, C. (1994) The use of fluorogenic esters to detect viable bacteria by flow-cytometry. J. Appl. Bacteriol. 77, 221228.
  • [97]
    Breeuwer, P., Drocourt, J.L., Rombouts, F.M., Abee, T. (1994) Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow-cytometry. Appl. Environ. Microbiol. 60, 14671472.
  • [98]
    Nedergaard, M., Desai, S., Pulsinelli, W. (1990) Dicarboxy-dichlorofluorescein: a new fluorescent probe for measuring acidic intracellular pH. Anal. Biochem. 187, 109114.
  • [99]
    Diaper, J.P., Edwards, C. (1994) The use of fluorogenic esters to detect viable bacteria by flow cytometry. J. Appl. Bacteriol. 77, 221228.
  • [100]
    Wallner, G., Tillmann, D., Haberer, K., Cornet, P., Drocourt, P. (1997) The ChemScan system: a new method for rapid microbiological testing of water. Eur. J. Parental Sci. 2, 123126.
  • [101]
    López-Amorós, R., Comas, J., García, M.T., Vives-Rego, J. (2000) Flow cytometric analysis of a marine LAS-degrading consortia. Microbios 101, 2336.
  • [102]
    Del Giorgio, P.A., Prairie, Y.T., Bird, D.F. (1997) Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, counted using CTC reduction and flow cytometry. Microb. Ecol. 34, 144154.
  • [103]
    Del Giorgio, P.A., Gasol, J.M., Vaqué, D., Mura, P., Agusti, S., Duarte, C.M. (1996) Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 11691179.
  • [104]
    Sieracki, M.E., Cucci, T.L., Nicinski, J. (1999) Flow cytometric analysis of the 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures. Appl. Environ. Microbiol. 65, 24092417.
  • [105]
    Catala, P., Parthuisot, N., Bernard, L., Baudart, J., Lemarchand, K., Lebaron, P. (1999) Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters. FEMS Microbiol. Lett. 187, 219226.
  • [106]
    Bartscht, K., Cypionka, H., Overmann, J. (1999) Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28, 249259.
  • [107]
    Karner, M., Fuhrman, J.A. (1997) Determination of active marine bacterioplankton a comparison of univrsal 16S rRNA probes, autoradiography, and nucleoid staining. Appl. Environ. Microbiol. 63, 12081213.
  • [108]
    Lovejoy, C., Legendre, L., Klein, B., Tremblay, J.-E., Ingram, R.G., Therriault, J.-C. (1996) Bacterial activity during early winter mixing (Gulf of St. Laurent, Canada). Aquat. Microb. Ecol. 10, 113.
  • [109]
    Lebaron, P., Servais, P., Troussellier, M., Courties, C., Vives-Rego, J., Muyzer, G., Bernard, L., Guindulain, T., Schäfer, H., Stackebrant, E. (1999) Changes in bacterial community structure in seawater mesocosms differing in their nutrient status. Aquat. Microb. Ecol. 19, 255267.
  • [110]
    Del Giorgio, P.A., Scarborough, G. (1995) Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and mairne plankton: implications on estimates of bacterial growth and production rates. J. Plankton Res. 17, 19051924.
  • [111]
    Sherr, B.F., del Giorgio, P., Sherr, E.B. (1999) Estimating abundance and single-cell characteristics of respiring bacteria via the redox dye CTC. Aquat. Microb. Ecol. 18, 117131.
  • [112]
    Sizemore, R.K., Caldwell, J.J., Kendrick, A.S. (1990) Alternate Gram staining technique using a fluorescent lectin. Appl. Environ. Microbiol. 56, 22452247.
  • [113]
    Mason, D.J., Shanmuganathan, S., Mortimer, F.C., Gant, V.A. (1998) A fluorescent Gram stain for flow cytometry and epifluorescence microscopy. Appl. Environ. Microbiol. 64, 26812685.
  • [114]
    Davey, H.M. and Kell, D.B. (1996) Rapid flow cytometric detection and identification of microbial particles using multiple stains and neural networks. Scientific Conference on Chemical and Biological Defense Research, Edgewood, Baltimore, MD, ERDEC-SP-048, Aberdeen Proving Ground, Baltimore, MD.
  • [115]
    Völsch, A., Nader, W.F., Geiss, H.K., Nebe, G., Birr, C. (1990) Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Appl. Environ. Microbiol. 56, 24302435.
  • [116]
    Amann, R.I., Ludwig, W., Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • [117]
    Phillips, A.P., Martin, K.L. (1988) Limitations of flow cytometry for the specific detection of bacteria in mixed populations. J. Immunol. Methods 106, 109117.
  • [118]
    Luk, J.M.C., Lindberg, A.A. (1991) Rapid and sensitive detection of Salmonella (O:6,7) by immunomagnetic monoclonal antibody-based assays. J. Immunol. Methods 137, 18.
  • [119]
    Vermunt, A.E.M., Franken, A.A.J.M., Beumer, R.R. (1992) Isolation of salmonellas by immunomagnetic separation. J. Appl. Bacteriol. 72, 112118.
  • [120]
    Porter, J., Pickup, R., Edwards, C. (1997) Evaluation of flow cytometric methods for the detection and viability assessment of bacteria from soil. Soil Biol. Biochem. 29, 91100.
  • [121]
    Boye, M., Ahl, T., Molin, S. (1995) Application of a strain-specific rRNA oligonucleotide probe targeting Pseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment. Appl. Environ. Microbiol. 61, 13841390.
  • [122]
    Davis, B.D., Luger, S.M., Tai, P.C. (1986) Role of ribosome degradation in the death of starved Escherichia coli cells. J. Bacteriol. 166, 439445.
  • [123]
    Lebaron, P., Catala, P., Fajon, C., Joux, F., Baudart, J., Bernard, L. (1997) A new sensitive, whole-cell hybridization technique for detection of bacteria involving a biotinylated oligonucleotide probe targeting rRNA and tyramide signal amplification. Appl. Environ. Microbiol. 63, 32743278.
  • [124]
    Flardh, K., Cohen, P.S., Kjelleberg, S. (1992) Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 174, 7806788.
  • [125]
    Fukui, M., Suwa, Y., Urushigawa, Y. (1996) High survival efficiency and ribosomal RNA decaying pattern of Desulfobacter latus, a highly specific acetate-utilizing organism, during starvation. FEMS Microbiol. Ecol. 19, 1725.
  • [126]
    Schönhuber, W., Fuchs, B., Juretschko, S., Amann, R. (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl. Environ. Microbiol. 63, 2683273.
  • [127]
    Hutter, K.J. (1992) Simultaneous multiparametric flow cytometric analysis of different species of microorganisms. Mon.schr. Brauwiss. 45, 280284.
  • [128]
    Wallner, G., Steinmetz, I., Bitter-Suermann, I., Amann, R. (1997) Combination of rRNA-targeted hybridization probes and immuno-probes for the identification of bacteria by flow cytometry. Syst. Appl. Microbiol. 19, 569576.
  • [129]
    Sahar, E., Lamed, R., Ofek, I. (1983) Rapid identification of Streptococcus pyogenes by flow cytometry. Eur. J. Clin. Microbiol. 2, 192195.
  • [130]
    Völsch, A., Nader, W.F., Geiss, H.K., Nebe, G., Birr, C. (1990) Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Appl. Environ. Microbiol. 56, 24302435.
  • [131]
    Brayton, P.R., Colwell, R.R. (1987) Fluorescent antibody staining method for enumeration of viable environmental Vibrio cholerae 01. J. Microbiol. Methods 6, 309314.
  • [132]
    Brayton, P.R., Tamplin, M.L., Huq, A., Colwell, R.R. (1987) Enumeration of Vibrio cholerae 01 in Bangladesh waters by fluorescent antibody direct viable count. Appl. Environ. Microbiol. 53, 28622865.
  • [133]
    Ahl, T., Christoffersen, K., Riemann, B., Nybroe, O. (1995) A combined microcosm and mesocosm approach to examine factors affecting survival and mortality of Pseudomonas fluorescens Ag1 in seawater. FEMS Microbiol. Ecol. 17, 107116.
  • [134]
    Desmonts, C., Minet, J., Colwell, R.R., Cormier, M. (1990) Fluorescent-antibody method useful for detecting viable but nonculturable Salmonella spp. in chlorinated wastewater. Appl. Environ. Microbiol. 56, 14481452.
  • [135]
    Desmonts, C., Minet, J., Colwell, R.R., Cormier, M. (1992) An improved method for direct viable count of Salmonella in seawater. J. Microbiol. Methods 16, 195201.
  • [136]
    Nishimura, M., Tsuda, A., Kogure, K., Ohwada, K. (1995) Application of flow cytometry for measuring changes in intracellular RNA contents of marine bacteria. Bull. Jap. Soc. Microb. Ecol. 10, 7379.
  • [137]
    Kalmbach, S., Manz, W., Szewzyk, U. (1997) Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolc potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiol. Ecol. 22, 265279.
  • [138]
    Pyle, B.H., Broadaway, S.C., McFeters, G.A. (1995) A rapid, direct method for enumerating respiring enterohemorrhagic Escherichia coli O157-H7 in water. Appl. Environ. Microbiol. 61, 26142619.
  • [139]
    Clarke, R.G., Pinder, A.C. (1998) Improved detection of bacteria by flow cytometry using a combination of antibody and viability markers. J. Appl. Microbiol. 84, 577584.
  • [140]
    Steen, H.B. (1990) Flow cytometric studies of microorganisms. In: Flow Cytometry and Sorting, 2nd edn. (Melamed, M.R., Lindmo, T. and Mendelsohn, M.L., Eds.), pp. 605–622. Wiley-Liss, New York.
  • [141]
    Magarinos, B., Romalde, J.L., Cid, A., Toranzo, A.E. (1997) Viability of starved Pasteurella piscicida in seawater monitored by flow cytometry and the effect of antibiotics on its resuscitation. Lett. Appl. Microbiol. 24, 122126.
  • [142]
    Joux, F., Lebaron, P., Troussellier, M. (1997) Succession of cellular states in a Salmonella typhimurium population during starvation in artificial microcosms. FEMS Microbiol. Ecol. 22, 6576.
  • [143]
    Joux, F., Lebaron, P., Troussellier, M. (1997) Changes in cellular states of the marine bacterium Deleya aquamarina under starvation conditions. Appl. Environ. Microbiol. 63, 26862694.
  • [144]
    Lewis, P.J., Errington, J. (1996) Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology 142, 733740.
  • [145]
    Wallner, G., Tillmann, D., Haberer, K., Cornet, P., Drocourt, J.L. (1997) The Chemscan system: a new method for rapid microbiological testing of water. Eur. J. Parental Sci. 2, 8992.
  • [146]
    Tombolini, R., Unge, A., Davey, M.E., Bruijn, F.J., Jansson, J.K. (1997) Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol. 22, 1728.
  • [147]
    Darynkiewicz, Z., Bedner, E., Li, X., Gorczyca, W., Melamed, M.R. (1999) Laser-scanning cytometry: a new instrumentation with many applications. Exp. Cell Res. 249, 112.
  • [148]
    Kamentsky, L.A., Kamentky, L.D. (1961) Microscope-based multiparameter laser scanning cytometer yielding data comparable to flow cytometry data. Cytometry 12, 381387.
  • [149]
    Lisle, J., Broadaway, S.C., Prescott, A.M., Pyle, B.H., Fricker, C., McFeters, G.A. (1998) Effects of starvation on physiological activity and chlorine desinfection resistance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 65, 46584662.
  • [150]
    Reynolds, D.T., Fricker, E.J., Purdy, D., Fricker, C.R. (1997) Development of a rapid method for the enumeration of bacteria in potable water. Water Sci. Technol. 35, 433436.
  • [151]
    Reynolds, D.T.T., Fricker, C.R. (1999) Application of laser scanning for the rapid and automated detection of bacteria in water samples. J. Appl. Bacteriol. 85, 456466.
  • [152]
    Cohen, J., Perfect, J.R., Durack, D.T. (1982) Method for the purification of Filobasidiella neoformans basidiospores by flow cytometry. Sabouraudia 20, 245249.
  • [153]
    Betz, J.W., Aretz, W., Härtel, W. (1984) Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5, 145150.
  • [154]
    Bloodgood, R.A., Salomonsky, N.L. (1987) Use of carbohydrate probes in conjunction with fluorescent activated cell sorting to select mutant cell lines on Chlamydomonas with defects in cell surface glycoproteins. Exp. Cell Res. 173, 572585.
  • [155]
    Sahar, E., Nir, R., Yisraeli, Y., Shabtai, Y., Lamed, R. A system for microbial strain improvement by product measurement and flow sorting of microcolonies,. Cytometry. 1, 1987. 599
  • [156]
    Bruschi, C.V. (1988) Detection and isolation of yeast adenine mutants by fluorescence-activated cell sorting. Proc. Soc. Exp. Biol. Med. 187, 383383.
  • [157]
    Nir, R., Lamed, R., Gueta, L., Sahar, E. (1990) Single-cell entrapment and microcolony development within uniform microspheres amenable to flow cytometry. Appl. Environ. Microbiol. 56, 28702875.
  • [158]
    An, G.H., Bielich, J., Auerbach, R., Johnson, E.A. (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Biotechnology 9, 7073.
  • [159]
    Azuma, T., Harrison, G.I., Demain, A.L. (1992) Isolation of a gramicidin S hyperproducing strain of Bacillus brevis by use of a fluorescence activated cell sorting system. Appl. Microbiol. Biotechnol. 38, 173178.
  • [160]
    Nir, R., Lamed, R., Sahar, E., Shabtai, Y. (1992) Flow cytometric isolation of growth-rate mutants – a yeast model. J. Microbiol. Methods 14, 247256.
  • [161]
    Libertin, C.R., Woloschak, G.E., Wilson, W.R., Smith, T.F. (1984) Analysis of Pneumocystis carinii cysts with a fluorescence-activated cell sorter. J. Clin. Microbiol. 20, 877880.
  • [162]
    Porter, J., Edwards, C., Morgan, J.A., Pickup, R.W., Morgan, J.A.W. (1993) Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting. Appl. Environ. Microbiol. 59, 33273333.
  • [163]
    Lim, L.C., Liu, Y.F., Schell, K., Lovrich, S.D., Callister, S.M., Schell, R.F. (1994) Detection of borreliacidal antibody by using acridine orange and flow cytometry. Clin. Diagn. Lab. Immunol. 1, 4450.
  • [164]
    Liu, Y.F., Lim, L.C.L., Schell, K., Lovrich, S., Callister, S.M., Schell, R.F. (1994) Differentiation of borreliacidal activity caused by immune serum or antimicrobial agents by flow cytometry. Clin. Diagn. Lab. Immunol. 1, 145149.
  • [165]
    Vesey, G., Slade, J.S., Byrne, M., Shepherd, K., Dennis, P.J., Fricker, C.R. (1993) Routine monitoring of Cryptosporidium oocysts in water using flow cytometry. J. Appl. Bacteriol. 75, 8790.
  • [166]
    Servais, P., Courties, C., Lebaron, P., Trousselier, M. (1999) Coupling bacterial activity measurements with cell sorting by flow cytometry. Microb. Ecol. 38, 180189.
  • [167]
    Muyzer, G., Ramsing, N.B. (1996) Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32, 19.
  • [168]
    Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 19191925.
  • [169]
    Hoffman, R.A. (1997) Standarization, calibration and control in flow cytometry. In: Current Protocols (Robertson, J.P., Ed.), pp. 1.3.1–1.3.19. John Wiley and Sons, New York.
  • [170]
    Harkins, K.R. (1999) Sorting of bacteria. In: Current Protocols in Cytometry (Robertson, J.P., Ed.), pp. 11.4.1–11.4.12. John Wiley and Sons, New York.
  • [171]
    Wilkins, M.F., Boddy, L., Morris, C.W., Jonker, R. (1996) A comparison of some neural and nonneural methods for identification of phytoplankton from flow cytometry data. Comput. Appl. Biosci. 12, 918.
  • [172]
    Gauci, M.R., Vesey, G., Narai, J., Veal, D., Williams, K.L., Piper, J.A. (1996) Observation of single cell fluorescence in laser flow cytometry. Cytometry 25, 388393.
  • [173]
    Porter, J., Robinson, J., Pickup, R., Edwards, C. (1998) An evaluation of lectin-mediated magnetic bead cell sorting for the targeted separation of enteric bacteria. J. Appl. Microbiol. 84, 722732.
  • [174]
    Kim, Y., Jett, J.H., Larson, E.J., Penttila, J.R., Marrone, B.L., Keller, R.A. (1999) Bacterial fingerprinting by flow cytometry bacterial species discrimination. Cytometry 36, 324332.