• [1]
    Okon, Y. (1994) Azospirillum/plant associations, pp. 175. CRC Press, Boca Raton, FL.
  • [2]
    Okon, Y., Vanderleyden, J. (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63, 366370.
  • [3]
    Döbereiner, J. and Day, J.M. (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Proceedings of the 1st International Symposium on N2 Fixation (Newton, W.E. and Nyman, C.J., Eds.), pp. 518–538. Washington State University Press, Pullman.
  • [4]
    Patriquin, D.G., Döbereiner, J., Jain, D.K. (1983) Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29, 900915.
  • [5]
    Boddey, R.M., Baldani, V.L.D., Baldani, J.I., Döbereiner, J. (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95, 109121.
  • [6]
    Okon, Y., Labandera-Gonzalez, C.A. (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26, 15511601.
  • [7]
    Tarrand, J.J., Krieg, N.R., Döbereiner, J. (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov.. Can. J. Microbiol. 24, 967980.
  • [8]
    Magalhães, F.M., Baldani, J.I., Souto, S.M., Kuykendall, J.R., Döbereiner, J. (1983) A new acid-tolerant Azospirillum species. An. Acad. Bras. Cienc. 55, 417429.
  • [9]
    Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., Thielemans, S., De Ley, J. (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar Grass (Leptochloa fusca (L.) Kunth). Int. J. Syst. Bacteriol. 37, 4351.
  • [10]
    Khammas, K.M., Ageron, E., Grimont, P.A.D., Kaiser, P. (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 140, 679693.
  • [11]
    Hartmann, A. and Zimmer, W. (1994) Physiology of Azospirillum. In: Azospirillum/Plant Associations (Okon, Y., Ed.), pp. 15–39. CRC Press, Boca Raton, FL.
  • [12]
    Lamm, R.B., Neyra, C.A. (1981) Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. Can. J. Microbiol. 27, 13201325.
  • [13]
    Sadasivan, L., Neyra, C.A. (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J. Bacteriol. 163, 716723.
  • [14]
    Sadasivan, L., Neyra, C.A. (1987) Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J. Bacteriol. 169, 16701677.
  • [15]
    Tal, S., Okon, Y. (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can. J. Microbiol. 31, 608613.
  • [16]
    Tal, S., Smirnoff, P., Okon, Y. (1990) The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation. J. Gen. Microbiol. 136, 11911196.
  • [17]
    Hall, P.G., Krieg, N.R. (1984) Application of the indirect immunoperoxidase stain technique to the flagella of Azospirillum brasilense. Appl. Environ. Microbiol. 47, 433435.
  • [18]
    Moens, S., Michiels, K., Keijers, V., Van Leuven, F., Vanderleyden, J. (1995) Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J. Bacteriol. 177, 54195426.
  • [19]
    Barak, R., Nur, I., Okon, Y. (1983) Detection of chemotaxis in Azospirillum brasilense. J. Appl. Bacteriol. 53, 399403.
  • [20]
    Reinhold, B., Hurek, T., Fendrik, I. (1985) Strain-specific chemotaxis of Azospirillum spp.. J. Bacteriol. 162, 190195.
  • [21]
    Zhulin, I.B., Armitage, J.P. (1993) Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J. Bacteriol. 175, 952958.
  • [22]
    Lopez-de-Victoria, G., Lovell, C.R. (1993) Chemotaxis of Azospirillum species to aromatic compounds. Appl. Environ. Microbiol. 59, 29512955.
  • [23]
    Lopez-de-Victoria, G., Fielder, D.R., Zimmer-Faust, R.K., Lovell, C.R. (1994) Motility behavior of Azospirillum species in response to aromatic compounds. Can. J. Microbiol. 40, 705711.
  • [24]
    Heinrich, D., Hess, D. (1985) Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Can. J. Microbiol. 31, 2631.
  • [25]
    Bashan, Y. (1986) Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. J. Gen. Microbiol. 132, 34073414.
  • [26]
    Barak, R., Nur, I., Okon, Y., Henis, Y. (1982) Aerotactic response of Azospirillum brasilense. J. Bacteriol. 152, 643649.
  • [27]
    Zhulin, I.B., Bespalov, V.A., Johnson, M.S., Taylor, B.L. (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 178, 51995204.
  • [28]
    Barbieri, P., Zanelli, T., Galli, E., Zanetti, G. (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol. Lett. 36, 8790.
  • [29]
    Okon, Y., Fallik, E., Sarig, S., Yahalom, E. and Tal, S. (1988) Plant growth promoting effects of Azospirillum. In: Nitrogen Fixation: Hundred Years after Gustav Fischer (Bothe, de Bruijn and Newton, Eds.), pp. 741–746. Stuttgart.
  • [30]
    Bashan, Y., Singh, M., Levanony, H. (1989) Contribution of Azospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Can. J. Bot. 67, 24292434.
  • [31]
    Fages, J. (1994) Azospirillum inoculants and field experiments. In: Azospirillum/Plant Associations (Okon, Y., Ed.), pp. 87–109. CRC Press, Boca Raton, FL.
  • [32]
    Umali-Garcia, M., Hubbell, D.H., Gaskins, M.H., Dazzo, F.B. (1980) Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39, 219226.
  • [33]
    Lin, W., Okon, Y., Hardy, R.W.F. (1983) Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol. 45, 17751779.
  • [34]
    Tien, T.M., Gaskins, M.H., Hubbell, D.H. (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37, 10161024.
  • [35]
    Kapulnik, Y., Okon, Y., Henis, Y. (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31, 881887.
  • [36]
    Okon, Y., Kapulnik, Y. (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90, 316.
  • [37]
    Fallik, E., Sarig, S. and Okon, Y. (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Azospirillum/Plant Associations (Okon, Y., Ed.), pp. 77–85. CRC Press, Boca Raton, FL.
  • [38]
    Sarig, S., Blum, A., Okon, Y. (1988) Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agric. Sci. Camb. 110, 271277.
  • [39]
    Rennie, R.J. (1980) Dinitrogen-fixing bacteria: computer-assisted identification of soil isolates. Can. J. Microbiol. 26, 12751283.
  • [40]
    Malik, K.A., Rasul, G., Hassan, U., Mehnaz, S. and Ashraf, M. (1994) Role of N2-fixing and growth hormones producing bacteria in improving growth of wheat and rice. In: Nitrogen Fixation with Non-legumes (Hegazi, N.A., Fayez, M. and Monib, M., Eds.), pp. 409–422. American University in Cairo Press, Cairo.
  • [41]
    Merrick, M.J., Edwards, R.A. (1995) Nitrogen control in bacteria. Microbiol. Rev. 59, 604622.
  • [42]
    Döbereiner, J., Baldani, V.L.D. and Reis, V.M. (1995) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Azospirillum VI and Related Microorganisms (Fendrik, I., Del Gallo, M., Vanderleyden, J. and de Zamaroczy, M., Eds.), pp. 3–14. Springer, Berlin.
  • [43]
    Baldani, V.L.D., Alvarez, M.A.deB., Baldani, J.I., Döbereiner, J. (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90, 3546.
  • [44]
    Vande Broek, A., Michiels, J., Van Gool, A., Vanderleyden, J. (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol. Plant-Microbe Interact. 6, 592600.
  • [45]
    Schloter, M., Kirchhof, G., Heinzmann, J., Döbereiner, J. and Hartmann, A. (1994) Immunological studies of the wheat-root-colonization by the Azospirillum brasilense strains Sp7 and Sp245 using strain-specific monoclonal antibodies. In: Nitrogen Fixation with Non-legumes (Hegazi, N.A., Fayez, M. and Monib, M., Eds.), pp. 291–297. American University in Cairo Press, Cairo.
  • [46]
    Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J.R., Hartmann, A. (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61, 10131019.
  • [47]
    Tien, T.M., Diem, H.G., Gaskins, M.H., Hubbell, D.H. (1981) Polygalacturonic acid transeliminase production by Azospirillum species. Can. J. Microbiol. 27, 426431.
  • [48]
    Bekri, M.A., Desair, J., Keijers, V., Proost, P., Searle-van Leeuwen, M., Vanderleyden, J., Vande Broek, A. (1999) Azospirillum irakense produces a novel type of pectate lyase. J. Bacteriol. 181, 24402447.
  • [49]
    Faure, D., Desair, J., Keijers, V., Bekri, M.A., Proost, P., Henrissat, B., Vanderleyden, J. (1999) Growth of Azospirillum irakense KBC1 on the aryl β-glucoside salicin requires either salA or salB. J. Bacteriol. 181, 30033009.
  • [50]
    De Mot, R., Vanderleyden, J. (1989) Application of two-dimensional protein analysis for strain fingerprinting and mutant analysis of Azospirillum species. Can. J. Microbiol. 35, 960967.
  • [51]
    Cavalcante, V.A., Döbereiner, J. (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108, 2331.
  • [52]
    Dong, Z., Heydrich, M., Bernard, K., McCully, M.E. (1995) Further evidence that the N2-fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl. Environ. Microbiol. 61, 18431846.
  • [53]
    Fuentes-Ramirez, L.E., Jimenez-Salgado, T., Abarca-Ocampo, I.R., Caballero-Mellado, J. (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154, 145150.
  • [54]
    Baldani, J.I., Caruso, L., Baldani, V.L.D., Goi, S.R., Döbereiner, J. (1997) Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29, 911922.
  • [55]
    Jimenez-Salgado, T., Fuentes-Ramirez, L.E., Tapia-Hernandez, A., Mascarua-Esparza, M.A., Martinez-Romero, E., Caballero-Mellado, J. (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl. Environ. Microbiol. 63, 36763683.
  • [56]
    Reis, V.M., Olivares, F.L., Döbereiner, J. (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. Microbiol. Biotechnol. 10, 401405.
  • [57]
    James, E.K., Olivares, F.L. (1997) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 17, 77119.
  • [58]
    James, E.K., Reis, V.M., Olivares, F.L., Baldani, J.I., Döbereiner, J. (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J. Exp. Bot. 45, 757766.
  • [59]
    Caballero-Mellado, J., Martinez-Romero, E. (1994) Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl. Environ. Microbiol. 60, 15321537.
  • [60]
    Caballero-Mellado, J., Fuentes-Ramirez, L.E., Reis, V.M., Martinez-Romero, E. (1995) Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl. Environ. Microbiol. 61, 30083013.
  • [61]
    Baldani, J.I., Baldani, V.L.D., Seldin, L., Döbereiner, J. (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36, 8693.
  • [62]
    Olivares, F.L., Baldani, V.L.D., Reis, V.M., Baldani, J.I., Döbereiner, J. (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves, predominantly of Gramineae. Biol. Fertil. Soils 21, 197200.
  • [63]
    Gough, C., Galera, C., Vasse, J., Webster, G., Cocking, E.C., Dénarié, J. (1997) Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol. Plant-Microbe Interact. 10, 560570.
  • [64]
    Reinhold-Hurek, B., Hurek, T., Gillis, M., Hoste, B., Vancanneyt, M., Kersters, K., De Ley, J. (1993) Azoarcus gen. nov., nitrogen-fixing Proteobacteria associated with roots of Kallar Grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov.. Int. J. Syst. Bacteriol. 43, 574584.
  • [65]
    Malik, K.A., Bilal, R., Mehnaz, S., Rasul, G., Mirza, M.S., Ali, S. (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194, 3744.
  • [66]
    Reinhold-Hurek, B., Hurek, T. (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol. 6, 139144.
  • [67]
    Hurek, T., Reinhold-Hurek, B., Van Montagu, M., Kellenberger, E. (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 176, 19131923.
  • [68]
    Hurek, T., Burggraf, S., Woese, C.R., Reinhold-Hurek, B. (1993) 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs. Appl. Environ. Microbiol. 59, 38163824.
  • [69]
    Reinhold-Hurek, B., Hurek, T., Claeyssens, M., Van Montagu, M. (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J. Bacteriol. 175, 70567065.
  • [70]
    Hurek, T., Egener, T., Reinhold-Hurek, B. (1997) Divergence in nitrogenases of Azoarcus spp., proteobacteria of the β subclass. J. Bacteriol. 179, 41724178.
  • [71]
    Van Bastelaere, E., Lambrecht, M., Vermeiren, H., Van Dommelen, A., Keijers, V., Proost, P., Vanderleyden, J. (1999) Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol. Microbiol. 32, 703714.
  • [72]
    van Rhijn, P., Vanstockem, M., Vanderleyden, J., De Mot, R. (1990) Isolation of behavioral mutants of Azospirillum brasilense by using Tn5-lacZ. Appl. Environ. Microbiol. 56, 990996.
  • [73]
    Croes, C., Van Bastelaere, E., DeClercq, E., Eyers, M., Vanderleyden, J., Michiels, K. (1991) Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26, 8393.
  • [74]
    Onyeocha, I., Vieille, C., Zimmer, W., Baca, B.E., Flores, M., Palacios, R., Elmerich, C. (1990) Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid 23, 169182.
  • [75]
    Michiels, K., De Troch, P., Onyeocha, I., Van Gool, A., Elmerich, C., Vanderleyden, J. (1989) Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid 21, 142146.
  • [76]
    Croes, C.L., Moens, S., Van Bastelaere, E., Vanderleyden, J., Michiels, K.W. (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J. Gen. Microbiol. 139, 22612269.
  • [77]
    Vande Broek, A., Lambrecht, M., Vanderleyden, J. (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144, 25992606.
  • [78]
    Moens, S., Vanderleyden, J. (1996) Functions of bacterial flagella. Crit. Rev. Microbiol. 22, 67100.
  • [79]
    Arora, S.K., Ritchings, B.W., Almira, E.C., Lory, S., Ramphal, R. (1998) The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect. Immun. 66, 10001007.
  • [80]
    Moens, S., Schloter, M., Vanderleyden, J. (1996) Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J. Bacteriol. 178, 50175019.
  • [81]
    Moens, S., Michiels, K., Vanderleyden, J. (1995) Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a Gram-negative nitrogen-fixing bacterium. Microbiology 141, 26512657.
  • [82]
    Michiels, K.W., Croes, C.L., Vanderleyden, J. (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 137, 22412246.
  • [83]
    Del Gallo, M. and Fendrik, I. (1994) The rhizosphere and Azospirillum. In: Azospirillum/Plant Associations (Okon, Y., Ed.), pp. 57–75. CRC Press, Boca Raton, FL.
  • [84]
    De Troch, P., Vanderleyden, J. (1996) Surface properties and motility of Rhizobium and Azospirillum in relation to plant root attachment. Microb. Ecol. 32, 149169.
  • [85]
    Skvortsov, I.M., Ignatov, V.V. (1998) Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiol. Lett. 165, 223229.
  • [86]
    Burdman, S., Jurkevitch, E., Schwartsburd, B., Hampel, M., Okon, Y. (1998) Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144, 19891999.
  • [87]
    Katupitiya, S., Millet, J., Vesk, M., Viccars, L., Zeman, A., Lidong, Z., Elmerich, C., Kennedy, I.R. (1995) A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl. Environ. Microbiol. 61, 19871995.
  • [88]
    Pereg-Gerk, L., Paquelin, A., Gounon, P., Kennedy, I.R., Elmerich, C. (1998) A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol. Plant-Microbe Interact. 11, 177187.
  • [89]
    Antonyuk, L.P., Fomina, O.R., Galkin, M.A., Ignatov, V.V. (1993) The effect of wheat germ agglutinin on dinitrogen fixation, glutamine synthetase activity and ammonia excretion in Azospirillum brasilense Sp245. FEMS Microbiol. Lett. 110, 285290.
  • [90]
    Antonyuk, L., Fomina, O., Kalinina, A., Semenov, S., Nesmeyanova, M. and Ignatov, V. (1995) Wheat lectin possibly serves as a signal molecule in the Azospirillum-wheat association. In: Azospirillum VI and Related Microorganisms (Fendrik, I., Del Gallo, M., Vanderleyden, J. and de Zamaroczy, M., Eds.), pp. 319–325. Springer, Berlin.
  • [91]
    Karpati, E., Kiss, P., Ponyi, T., Fendrik, I., de Zamaroczy, M., Orosz, L. (1999) Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. J. Bacteriol. 181, 39493955.
  • [92]
    Del Gallo, M., Negi, M., Neyra, C.A. (1989) Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. 171, 35043510.
  • [93]
    Castellanos, T., Ascencio, F., Bashan, Y. (1998) Cell-surface lectins of Azospirillum spp.. Curr. Microbiol. 36, 241244.
  • [94]
    Burdman, S., Jurkevitch, E., Schwartsburd, B., Okon, Y. (1999) Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense. Microbiology 145, 11451152.
  • [95]
    Alexandre, G., Jacoud, C., Faure, D., Bally, R. (1996) Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere. FEMS Microbiol. Ecol. 19, 271278.
  • [96]
    Alexandre, G., Bally, R. (1999) Emergence of a laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol. Lett. 174, 371378.
  • [97]
    Waelkens, F., Maris, M., Verreth, C., Vanderleyden, J., Van Gool, A. (1987) Azospirillum DNA shows homology with Agrobacterium chromosomal virulence genes. FEMS Microbiol. Lett. 43, 241246.
  • [98]
    Raina, S., Raina, R., Venkatesh, T.V., Das, H.K. (1995) Isolation and characterization of a locus from Azospirillum brasilense Sp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant. Mol. Plant-Microbe Interact. 8, 322326.
  • [99]
    Fogher, C., Dusha, I., Barbot, P., Elmerich, C. (1985) Heterologous hybridization of Azospirillum DNA to Rhizobium nod and fix genes. FEMS Microbiol. Lett. 30, 245249.
  • [100]
    Vieille, C., Elmerich, C. (1990) Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nodPQ. Mol. Plant-Microbe Interact. 3, 389400.
  • [101]
    Delledonne, M., Porcari, R., Fogher, C. Nucleotide sequence of the nodG gene of Azospirillum brasilense,. Nucleic Acids Res. 18, 1990. 6435
  • [102]
    Vande Broek, A., Vanderleyden, J. (1995) The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Mol. Plant-Microbe Interact. 8, 800810.
  • [103]
    Vieille, C., Elmerich, C. (1992) Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and to Rhizobium meliloti nodG. Mol. Gen. Genet. 231, 375384.
  • [104]
    De Troch, P., Philip-Hollingsworth, S., Orgambide, G., Dazzo, F.B., Vanderleyden, J. (1992) Analysis of extracellular polysaccharides isolated from Azospirillum brasilense wild type and mutant strains. Symbiosis 13, 229241.
  • [105]
    Michiels, K., Vanderleyden, J., Van Gool, A. and Signer, E.R. (1989) Isolation and properties of Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants. In: Nitrogen Fixation with Non-legumes (Skinner, F.A., Boddey, R.M. and Fendrik, I., Eds.), pp. 189–195. Kluwer Academic, Dordrecht.
  • [106]
    Michiels, K., Verreth, C., Vanderleyden, J. (1990) Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. J. Appl. Bacteriol. 69, 705711.
  • [107]
    Michiels, K.W., Vanderleyden, J., Van Gool, A.P., Signer, E.R. (1988) Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutations. J. Bacteriol. 170, 54015404.
  • [108]
    De Troch, P., Petersen, D.J. and Vanderleyden, J. (1995) Polysaccharide synthesis in Azospirillum brasilense. In: Azospirillum VI and Related Microorganisms (Fendrik, I., Del Gallo, M., Vanderleyden, J. and de Zamaroczy, M., Eds.), pp. 97–103. Springer, Berlin.
  • [109]
    De Troch, P., Keijers, V., Vanderleyden, J. (1994) Sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP-glucose 4′-epimerase. Gene 144, 143144.
  • [110]
    Dörr, J., Hurek, T., Reinhold-Hurek, B. (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol. 30, 717.
  • [111]
    Burris, R.H., Roberts, G.P. (1993) Biological nitrogen fixation. Annu. Rev. Nutr. 13, 317335.
  • [112]
    Quiviger, B., Franche, C., Lutfalla, G., Rice, D., Haselkorn, R., Elmerich, C. (1982) Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense. Biochimie 64, 495502.
  • [113]
    Perroud, B., Bandhari, S.K. and Elmerich, C. (1985) The nifHDK operon of Azospirillum brasilense Sp7. In: Azospirillum III: Genetics, Physiology, Ecology (Klingmüller, W., Ed.), pp. 10–19. Springer, Berlin.
  • [114]
    Nair, S.K., Jara, P., Quiviger, B. and Elmerich, C. (1983) Recent developments in the genetics of nitrogen fixation in Azospirillum. In: Azospirillum II: Genetics, Physiology, Ecology (Klingmüller, W., Ed.), pp. 29–38. Springer, Basel.
  • [115]
    Galimand, M., Perroud, B., Delorme, F., Paquelin, A., Vieille, C., Bozouklian, H., Elmerich, C. (1989) Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J. Gen. Microbiol. 135, 10471059.
  • [116]
    Milcamps, A., Keijers, V., Vanderleyden, J. (1993) Identification of a nifW-like gene in Azospirillum brasilense. Biochim. Biophys. Acta 1173, 237238.
  • [117]
    Milcamps, A., Vanderleyden, J. (1993) Azospirillum genetics. Curr. Topics Mol. Genet. 1, 215232.
  • [118]
    de Zamaroczy, M. (1995) Genetic control of nitrogen assimilation and nitrogen fixation in free living Azospirillum brasilense: a review. In: Azospirillum VI and Related Microorganisms (Fendrik, I., Del Gallo, M., Vanderleyden, J. and de Zamaroczy, M., Eds.), pp. 77–89. Springer, Berlin.
  • [119]
    Frazzon, J., Schrank, I.S. (1998) Sequencing and complementation analysis of the nifUSV genes from Azospirillum brasilense. FEMS Microbiol. Lett. 159, 151158.
  • [120]
    Liang, Y.Y., Kaminski, P.A., Elmerich, C. (1991) Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Mol. Microbiol. 5, 27352744.
  • [121]
    Kennedy, C., Toukdarian, A. (1987) Genetics of Azotobacters: applications to nitrogen fixation and related aspects of metabolism. Annu. Rev. Microbiol. 41, 227258.
  • [122]
    Bennett, L.T., Cannon, F., Dean, D.R. (1988) Nucleotide sequence and mutagenesis of the nifA gene from Azotobacter vinelandii. Mol. Microbiol. 2, 315321.
  • [123]
    Joerger, R.D., Bishop, P.E. (1988) Nucleotide sequence and genetic analysis of the nifBnifQ region from Azotobacter vinelandii. J. Bacteriol. 170, 14751487.
  • [124]
    Jacobson, M.R., Brigle, K.E., Bennett, L.T., Setterquist, R.A., Wilson, M.S., Cash, V.L., Beynon, J., Newton, W.E., Dean, D.R. (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J. Bacteriol. 171, 10171027.
  • [125]
    Machado, I.M.P., Yates, M.G., Machado, H.B., Souza, E.M., Pedrosa, F.O. (1996) Cloning and sequencing of the nitrogenase structural genes nifHDK of Herbaspirillum seropedicae. Braz. J. Med. Biol. Res. 29, 15991602.
  • [126]
    Sevilla, M., Meletzus, D., Teixeira, K., Lee, S., Nutakki, A., Baldani, I., Kennedy, C. (1997) Analysis of nif and regulatory genes in Acetobacter diazotrophicus. Soil Biol. Biochem. 29, 871874.
  • [127]
    Souza, E.M., Funayama, S., Rigo, L.U., Pedrosa, F.O. (1991) Cloning and characterization of the nifA gene from Herbaspirillum seropedicae strain Z78. Can. J. Microbiol. 37, 425429.
  • [128]
    Sevilla, M., de Oliveira, A., Baldani, I., Kennedy, C. (1998) Contributions of the bacterial endophyte Acetobacter diazotrophicus to sugarcane nutrition: a preliminairy study. Symbiosis 25, 181191.
  • [129]
    Westby, C.A., Enderlin, C.S., Steinberg, N.A., Joseph, C.M., Meeks, J.C. (1987) Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess. J. Bacteriol. 169, 42114214.
  • [130]
    Pelanda, R., Vanoni, M.A., Perego, M., Piubelli, L., Galizzi, A., Curti, B., Zanetti, G. (1993) Glutamate synthase genes of the diazotroph Azospirillum brasilense. Cloning, sequencing, and analysis of functional domains. J. Biol. Chem. 268, 30993106.
  • [131]
    Bozouklian, H., Fogher, C., Elmerich, C. (1986) Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann. Inst. Pasteur Microbiol. 137B, 318.
  • [132]
    de Zamaroczy, M., Delorme, F., Elmerich, C. (1990) Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospirillum brasilense. Mol. Gen. Genet. 224, 421430.
  • [133]
    de Zamaroczy, M., Paquelin, A., Elmerich, C. (1993) Functional organization of the glnBglnA cluster of Azospirillum brasilense. J. Bacteriol. 175, 25072515.
  • [134]
    Gauthier, D., Elmerich, C. (1977) Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol. Lett. 2, 101104.
  • [135]
    Toukdarian, A., Saunders, G., Selman-Sosa, G., Santero, E., Woodley, P., Kennedy, C. (1990) Molecular analysis of the Azotobacter vinelandii glnA gene encoding glutamine synthetase. J. Bacteriol. 172, 65296539.
  • [136]
    Hartmann, A., Kleiner, D. (1982) Ammonium (methylammonium) transport by Azospirillum spp.. FEMS Microbiol. Lett. 15, 6567.
  • [137]
    Van Dommelen, A., Van Bastelaere, E., Keijers, V., Vanderleyden, J. (1997) Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake, and chemotaxis. Plant Soil 194, 155160.
  • [138]
    Van Dommelen, A., Keijers, V., Vanderleyden, J., de Zamaroczy, M. (1998) (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense. J. Bacteriol. 180, 26522659.
  • [139]
    Milcamps, A., Van Dommelen, A., Stigter, J., Vanderleyden, J., de Bruijn, F.J. (1996) The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis. Can. J. Microbiol. 42, 467478.
  • [140]
    de Zamaroczy, M. (1998) Structural homologues PII and PZ of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. Mol. Microbiol. 29, 449463.
  • [141]
    Meletzus, D., Rudnick, P., Doetsch, N., Green, A., Kennedy, C. (1998) Characterization of the glnKamtB operon of Azotobacter vinelandii. J. Bacteriol. 180, 32603264.
  • [142]
    Rudnick, P., Colnaghi, R., Green, A. and Kennedy, C. (1998) Molecular analysis of the glnB, amtB, glnD and glnA genes in Azotobacter vinelandii. In: Biological Nitrogen Fixation for the 21st Century (Elmerich, C., Kondorosi, A. and Newton, W.E., Eds.), pp. 123–124. Kluwer Academic, Dordrecht.
  • [143]
    Merrick, M.J. (1992) Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In: Biological Nitrogen Fixation (Stacey, G., Burris, R. and Evans, H., Eds.), pp. 835–876. Chapman and Hall, New York.
  • [144]
    Machado, H.B., Yates, M.G., Funayama, S., Rigo, L.U., Steffens, M.B.R., Souza, E.M., Pedrosa, F.O. (1995) The ntrBC genes of Azospirillum brasilense are part of a nifR3-like-ntrBntrC operon and are negatively regulated. Can. J. Microbiol. 41, 674684.
  • [145]
    Liang, Y.Y., Arsène, F., Elmerich, C. (1993) Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Mol. Gen. Genet. 240, 188196.
  • [146]
    de Zamaroczy, M., Paquelin, A., Peltre, G., Forchhammer, K., Elmerich, C. (1996) Coexistence of two structurally similar but functionally different PII proteins in Azospirillum brasilense. J. Bacteriol. 178, 41434149.
  • [147]
    Benelli, E.M., Souza, E.M., Funayama, S., Rigo, L.U., Pedrosa, F.O. (1997) Evidence for two possible glnB-type genes in Herbaspirillum seropedicae. J. Bacteriol. 179, 46234626.
  • [148]
    Perlova, O., Nawroth, R. and Meletzus, D. (1998) Identification and characterization of genes involved in the ammonium sensing mechanism in Acetobacter diazotrophicus. In: Biological Nitrogen Fixation for the 21st century (Elmerich, C., Kondorosi, A. and Newton, W.E., Eds.), p. 166. Kluwer Academic, Dordrecht.
  • [149]
    Martin, D. and Reinhold-Hurek, B. (1998) Identification and molecular analysis of multiple glnB homologues in Azoarcus sp. BH72. In: Biological Nitrogen Fixation for the 21st Century (Elmerich, C., Kondorosi, A. and Newton, W.E., Eds.), p. 405. Kluwer Academic, Dordrecht.
  • [150]
    Gallori, E., Bazzicalupo, M. (1985) Effect of nitrogen compounds on nitrogenase activity in Azospirillum brasilense. FEMS Microbiol. Lett. 28, 3538.
  • [151]
    Vande Broek, A., Michiels, J., de Faria, S.M., Milcamps, A., Vanderleyden, J. (1992) Transcription of the Azospirillum brasilense nifH gene is positively regulated by NifA and NtrA and is negatively controlled by the cellular nitrogen status. Mol. Gen. Genet. 232, 279283.
  • [152]
    Passaglia, L.M.P., Van Soom, C., Schrank, A., Schrank, I.S. (1998) Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense. Braz. J. Med. Biol. Res. 31, 13631374.
  • [153]
    Toukdarian, A., Kennedy, C. (1986) Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 5, 399407.
  • [154]
    Santero, E., Toukdarian, A., Humphrey, R., Kennedy, C. (1988) Identification and characterization of two nitrogen fixation regulatory regions, nifA and nfrX, in Azotobacter vinelandii and Azotobacter chroococcum. Mol. Microbiol. 2, 303314.
  • [155]
    de Zamaroczy, M., Delorme, F., Elmerich, C. (1989) Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7. Mol. Gen. Genet. 220, 8894.
  • [156]
    Fani, R., Allotta, G., Bazzicalupo, M., Ricci, F., Schipani, C., Polsinelli, M. (1989) Nucleotide sequence of the gene encoding the nitrogenase iron protein (nifH) of Azospirillum brasilense and identification of a region controlling nifH transcription. Mol. Gen. Genet. 220, 8187.
  • [157]
    Souza, E.M., Funayama, S., Rigo, L.U., Yates, M.G., Pedrosa, F.O. (1991) Sequence and structural organization of a nifA-like gene and part of a nifB-like gene of Herbaspirillum seropedicae strain Z78. J. Gen. Microbiol. 137, 15111522.
  • [158]
    Liang, Y.Y., de Zamaroczy, M., Arsène, F., Paquelin, A., Elmerich, C. (1992) Regulation of nitrogen fixation in Azospirillum brasilense Sp7: involvement of nifA, glnA and glnB gene products. FEMS Microbiol. Lett. 100, 113119.
  • [159]
    Arsène, F., Kaminski, P.A., Elmerich, C. (1996) Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain. J. Bacteriol. 178, 48304838.
  • [160]
    Van Dommelen, A. (1998) Ammonium transport in Azospirillum brasilense. Ph.D. Thesis, Catholic University of Leuven, Belgium.
  • [161]
    Souza, E.M., Pedrosa, F.O., Drummond, M., Rigo, L.U., Yates, M.G. (1999) Control of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J. Bacteriol. 181, 681684.
  • [162]
    Monteiro, R.A., Souza, E.M., Funayama, S., Yates, M.G., Pedrosa, F.O., Chubatsu, L.S. (1999) Expression and functional analysis of an N-truncated NifA protein of Herbaspirillum seropedicae. FEBS Lett. 447, 283286.
  • [163]
    Fischer, H.-M., Bruderer, T., Hennecke, H. (1988) Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res. 16, 22072224.
  • [164]
    Dixon, R. (1998) The oxygen-responsive NifL-NifA complex: a novel two-component regulatory system controlling nitrogenase synthesis in γ-Proteobacteria. Arch. Microbiol. 169, 371380.
  • [165]
    Bali, A., Blanco, G., Hill, S., Kennedy, C. (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl. Environ. Microbiol. 58, 17111718.
  • [166]
    Blanco, G., Drummond, M., Woodley, P., Kennedy, C. (1993) Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9, 869879.
  • [167]
    Sidoti, C., Harwood, G., Ackerman, R., Coppard, J., Merrick, M. (1993) Characterization of mutations in the Klebsiella pneumoniae nitrogen fixation regulatory gene nifL which impair oxygen regulation. Arch. Microbiol. 159, 276281.
  • [168]
    Söderbäck, E., Reyes-Ramirez, F., Eydmann, T., Austin, S., Hill, S., Dixon, R. (1998) The redox- and fixed nitrogen-responsive regulatory protein NIFL from Azotobacter vinelandii comprises discrete flavin and nucleotide-binding domains. Mol. Microbiol. 28, 179192.
  • [169]
    Austin, S., Buck, M., Cannon, W., Eydmann, T., Dixon, R. (1994) Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL. J. Bacteriol. 176, 34603465.
  • [170]
    Eydmann, T., Söderbäck, E., Jones, T., Hill, S., Austin, S., Dixon, R. (1995) Transcriptional activation of the nitrogenase promoter in vitro: adenosine nucleotides are required for inhibition of NIFA activity by NIFL. J. Bacteriol. 177, 11861195.
  • [171]
    Contreras, A., Drummond, M., Bali, A., Blanco, G., Garcia, E., Bush, G., Kennedy, C., Merrick, M. (1991) The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria. J. Bacteriol. 173, 77417749.
  • [172]
    Jack, R., de Zamaroczy, M., Merrick, M. (1999) The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J. Bacteriol. 181, 11561162.
  • [173]
    Hill, S., Austin, S., Eydmann, T., Jones, T., Dixon, R. (1996) Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. USA 93, 21432148.
  • [174]
    Macheroux, P., Hill, S., Austin, S., Eydmann, T., Jones, T., Kim, S.-O., Poole, R., Dixon, R. (1998) Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator. Biochem. J. 332, 413419.
  • [175]
    Hartmann, A., Fu, H., Burris, R.H. (1986) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp.. J. Bacteriol. 165, 864870.
  • [176]
    Fu, H., Hartmann, A., Lowery, R.G., Fitzmaurice, W.P., Roberts, G.P., Burris, R.H. (1989) Posttranslational regulatory system for nitrogenase activity in Azospirillum spp.. J. Bacteriol. 171, 46794685.
  • [177]
    Fu, H.-A., Fitzmaurice, W.P., Roberts, G.P., Burris, R.H. (1990) Cloning and expression of draTG genes from Azospirillum lipoferum. Gene 86, 9598.
  • [178]
    Zhang, Y., Burris, R.H., Roberts, G.P. (1992) Cloning, sequencing, mutagenesis, and functional characterization of draT and draG genes from Azospirillum brasilense. J. Bacteriol. 174, 33643369.
  • [179]
    Zhang, Y., Burris, R.H., Ludden, P.W., Roberts, G.P. (1993) Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense. J. Bacteriol. 175, 67816788.
  • [180]
    Hartmann, A., Burris, R.H. (1987) Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. 169, 944948.
  • [181]
    Zhang, Y., Burris, R.H., Ludden, P.W., Roberts, G.P. (1994) Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: ammonium and anaerobic switch-off occurs through independent signal transduction pathways. J. Bacteriol. 176, 57805787.
  • [182]
    Zhang, Y., Burris, R.H., Ludden, P.W., Roberts, G.P. (1996) Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium. J. Bacteriol. 178, 29482953.
  • [183]
    Fu, H., Burris, R.H. (1989) Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae. J. Bacteriol. 171, 31683175.
  • [184]
    Moshiri, F., Kim, J.W., Fu, C., Maier, R.J. (1994) The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol. Microbiol. 14, 101114.
  • [185]
    Reynders, L., Vlassak, K. (1979) Conversion of tryptophan to indoleacetic acid by Azospirillum brasilense. Soil Biol. Biochem. 11, 547548.
  • [186]
    Bottini, R., Fulchieri, M., Pearce, D., Pharis, R.P. (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90, 4547.
  • [187]
    Jain, D.K., Patriquin, D.G. (1985) Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can. J. Microbiol. 31, 206210.
  • [188]
    Barbieri, P., Galli, E. (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res. Microbiol. 144, 6975.
  • [189]
    Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., Vanderleyden, J. (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212, 155164.
  • [190]
    Hartmann, A., Singh, M., Klingmüller, W. (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol. 29, 916923.
  • [191]
    Abdel-Salam, M.S., Klingmüller, W. (1987) Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole acetic acid mutants. Mol. Gen. Genet. 210, 165170.
  • [192]
    Costacurta, A., Vanderleyden, J. (1995) Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21, 118.
  • [193]
    Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., Van Onckelen, H. (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Interact. 6, 609615.
  • [194]
    Baldi, B.G., Maher, B.R., Slovin, J.P., Cohen, J.D. (1991) Stable isotope labeling, in vivo, of D- and L-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol. 95, 12031208.
  • [195]
    Wright, A.D., Sampson, M.B., Neuffer, M.G., Michalczuk, L., Slovin, J.P., Cohen, J.D. (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254, 9981000.
  • [196]
    Bar, T., Okon, Y. (1993) Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7. Can. J. Microbiol. 39, 8186.
  • [197]
    Costacurta, A., Keijers, V., Vanderleyden, J. (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet. 243, 463472.
  • [198]
    Soto-Urzua, L., Xochinua-Corona, Y.G., Flores-Encarnacion, M., Baca, B.E. (1996) Purification and properties of aromatic amino acid aminotransferases from Azospirillum brasilense UAP 14 strain. Can. J. Microbiol. 42, 294298.
  • [199]
    Koga, J., Adachi, T., Hidaka, H. (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol. Gen. Genet. 226, 1016.
  • [200]
    Brandl, M.T., Lindow, S.E. (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 62, 41214128.
  • [201]
    Vande Broek, A., Lambrecht, M., Eggermont, K., Vanderleyden, J. (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J. Bacteriol. 181, 13381342.
  • [202]
    Lambrecht, M., Vande Broek, A., Dosselaere, F., Vanderleyden, J. (1999) The ipdC promoter auxin-responsive element of Azospirillum brasilense, a prokaryotic ancestral form of the plant AuxRE. Mol. Microbiol. 32, 889891.
  • [203]
    De Troch, P., Dosselaere, F., Keijers, V., de Wilde, P., Vanderleyden, J. (1997) Isolation and characterization of the Azospirillum brasilense trpE(G) gene, encoding anthranilate synthase. Curr. Microbiol. 34, 2732.
  • [204]
    Bae, Y.M., Holmgren, E., Crawford, I.P. (1989) Rhizobium meliloti anthranilate synthase gene: cloning, sequence, and expression in Escherichia coli. J. Bacteriol. 171, 34713478.
  • [205]
    Dosselaere, F., Vande Broek, A., Lambrecht, M., De Troch, P., Prinsen, E., Okon, Y., Keijers, V. and Vanderleyden, J. (1997) Indole-3-acetic acid biosynthesis in Azospirillum brasilense. In: Plant Growth Promoting Rhizobacteria: Present Status and Future Prospects (Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N. and Akino, S., Eds.), pp. 306–309. Japan-OECD Joint Workshop.
  • [206]
    Zimmer, W., Aparicio, C., Elmerich, C. (1991) Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpGDC cluster. Mol. Gen. Genet. 229, 4151.
  • [207]
    Katzy, E.I., Iosipenko, A.D., Egorenkov, D.A., Zhuravleva, E.A., Panasenko, V.I., Ignatov, V.V. (1990) Involvement of Azospirillum brasilense plasmid DNA in the production of indole acetic acid. FEMS Microbiol. Lett. 72, 14.
  • [208]
    Gonzalez-Lopez, J., Salmeron, V., Martinez-Toledo, M.V., Ballesteros, F., Ramos-Cormenzana, A. (1986) Production of auxins, gibberellins and cytokinins by Azotobacter vinelandii ATCC 12837 in chemically-defined media and dialysed soil media. Soil Biol. Biochem. 18, 119120.
  • [209]
    Martinez-Toledo, M.V., de la Rubia, T., Moreno, J., Gonzalez-Lopez, J. (1988) Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant Soil 110, 149152.
  • [210]
    Brown, M.E., Walker, N. (1970) Indolyl-3-acetic acid formation by Azotobacter chroococcum. Plant Soil 32, 250253.
  • [211]
    Hurek, T., Reinhold-Hurek, B., Turner, G.L., Bergersen, F.J. (1994) Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J. Bacteriol. 176, 47264733.
  • [212]
    Hurek, T., Van Montagu, M., Kellenberger, E., Reinhold-Hurek, B. (1995) Induction of complex intracytoplasmic membranes related to nitrogen fixation in Azoarcus sp. BH72. Mol. Microbiol. 18, 225236.
  • [213]
    Karg, T., Reinhold-Hurek, B. (1996) Global changes in protein composition of N2-fixing Azoarcus sp. strain BH72 upon diazosome formation. J. Bacteriol. 178, 57485754.
  • [214]
    Boddey, R.M., Urquiaga, S., Reis, V., Döbereiner, J. (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137, 111117.
  • [215]
    Cojho, E.H., Reis, V.M., Schenberg, A.C.G., Döbereiner, J. (1993) Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol. Lett. 106, 341346.