• [1]
    Gobetti, I., Corsetti, A., Rossi, J., La Rosa, F., De Vincenzi, S. (1994) Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy. Ital. J. Food. Sci. 6, 8594.
  • [2]
    Almeida, M.J., Pais, C.J. (1996) Characterization of the yeast population from traditional corn and rye bread doughs. Lett. Appl. Microbiol. 23, 154158.
  • [3]
    Kurtzman, C.P. and Fell, J.W. (1998) The Yeasts. A Taxonomic Study, Elsevier Science, Amsterdam.
  • [4]
    De Deken, R.H. (1966) The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44, 149156.
  • [5]
    Fiechter, A. (1981) Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol. 22, 123183.
  • [6]
    Sols, A., Gancedo, C. and De la Fuente, G. (1971) Energy-yielding metabolism in yeasts. In: The Yeasts (Rose, A.H. and Harrison, J.S., Eds.), Vol. 2, pp. 271–308. Academic Press, London.
  • [7]
    Fraenkel, D.G. (1982) Carbohydrate metabolism. In: The Molecular Biology of the Yeast Saccharomyces (Strathern, J.N., Jones, E.W. and Broach, J.R., Eds.), Vol. 1, pp. 1–37. Cold Spring Harbor Laboratory, Cold Spring Harbor.
  • [8]
    Gancedo, C. and Serrano, R. (1989) Energy yielding metabolism. In: The Yeasts (Rose, A.H. and Harrison, J.S., Eds.), 2nd edn., Vol. 3, pp. 205–260. Academic Press, London.
  • [9]
    Zimmermann, F.K. and Entian, K.D. (1997) Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications, Technomic, Lancaster.
  • [10]
    Wolf, K. (1996) Nonconventional Yeasts in Biotechnology. A Handbook, Springer, Berlin.
  • [11]
    Barnett, J.A. (1997) Introduction: a historical survey of the study of yeasts. In: Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.D. Eds.), pp. 1–34. Technomic, Lancaster.
  • [12]
    Sols, A. (1961) Carbohydrate metabolism. Annu. Rev. Biochem. 30, 213238.
  • [13]
    Boles, E., Hollenberg, C.P. (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85111.
  • [14]
    Özcan, S., Johnston, M. (1999) Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63, 554569.
  • [15]
    Billard, P., Menart, S., Blaisonneau, J., Bolotin-Fukuhara, M., Fukuhara, H., Wesolowski-Louvel, M. (1996) Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J. Bacteriol. 178, 58605866.
  • [16]
    Goffrini, P., Wesolowski-Louvel, M., Ferrero, I., Fukuhara, H. RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter,. Nucleic Acids Res. 18, 1990. 5294
  • [17]
    Wesolowski-Louvel, M., Goffrini, P., Ferrero, I., Fukuhara, H. (1992) Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Mol. Gen. Genet. 233, 8996.
  • [18]
    Weirich, J., Goffrini, P., Kuger, P., Ferrero, I., Breunig, K. (1997) Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis. Eur. J. Biochem. 249, 248257.
  • [19]
    Chen, X.J., Wesolowski-Louvel, M., Fukuhara, H. (1992) Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol. Gen. Genet. 233, 97105.
  • [20]
    Goffrini, P., Wesolowski-Louvel, M., Ferrero, I. (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol. Gen. Genet. 228, 401409.
  • [21]
    Wesolowski-Louvel, M., Goffrini, P., Ferrero, I. The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglucose isomerase,. Nucleic Acids Res. 16, 1988. 8714
  • [22]
    Prior, C., Mamessier, P., Fukuhara, H., Chen, X.J., Wésolowski-Louvel, M. (1993) The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol. Cell. Biol. 13, 38823889.
  • [23]
    Blaisonneau, J., Fukuhara, H., Wesolowski-Louvel, M. (1997) The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol. Gen. Genet. 253, 469477.
  • [24]
    Varma, A., Singh, B.B., Karnani, N., Lichtenberg-Frate, H., Höfer, M., Magee, B.B., Prasad, R. (2000) Molecular cloning and functional characterisation of a glucose transporter, CaHGT1, of Candida albicans. FEMS Microbiol. Lett. 182, 1521.
  • [25]
    Peinado, J.M., Cameira-dos-Santos, P.J., Loureiro-Dias, M.C. (1989) Regulation of glucose transport in Candida utilis. J. Gen. Microbiol. 135, 195201.
  • [26]
    van den Broek, P.J.A., van Gompel, A.E., Luttik, M.A.H., Pronk, J.T., van Leeuwen, C.M. (1997) Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis. Biochem. J. 321, 487495.
  • [27]
    Weierstall, T., Hollenberg, C.P., Boles, E. (1999) Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 31, 871883.
  • [28]
    Does, A.L., Bisson, L.F. (1989) Comparison of glucose uptake kinetics in different yeasts. J. Bacteriol. 171, 13031308.
  • [29]
    Höfer, M., Nassar, F.R. (1987) Aerobic and anaerobic uptake of sugars in Schizosaccharomyces pombe. J. Gen. Microbiol. 133, 21632172.
  • [30]
    Heiland, S., Radovanovic, N., Höfer, M., Winderickx, J., Lichtenberg, H. (2000) Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182, 21532162.
  • [31]
    Mehta, S.V., Patil, V.B., Velmurugan, S., Lobo, Z., Maitra, P.K. (1998) std1, a gene involved in glucose transport in Schizosaccharomyces pombe. J. Bacteriol. 180, 674679.
  • [32]
    Riley, M.I., Srekrishna, K., Bhairi, S., Dickson, R.C. (1987) Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol. Gen. Genet. 208, 145151.
  • [33]
    Hoever, M., Milbradt, B., Höfer, M. d-Gluconate is an alternative growth substrate for cultivation of Schizosaccharomyces pombe mutants. Arch. Microbiol. 157, 1992. 191193.
  • [34]
    Caspari, T. (1997) Onset of gluconate-H+ symport in Schizosaccharomyces pombe is regulated by the kinases Wis and Pka1, and requires the gti+ gene product. J. Cell. Sci. 110, 25992608.
  • [35]
    Caspari, T., Urlinger, S. (1996) The activity of the gluconate-H+ symporter of Schizosaccharomyces pombe cells is down-regulated by d-glucose and exogenous cAMP. FEBS Lett. 395, 272276.
  • [36]
    Georis, I., Cassart, J.P., Breunig, K.D., Vandenhaute, J. (1999) Glucose repression of the Kluyveromyces lactis invertase gene KlINV1 does not require Mig1p. Mol. Gen. Genet. 261, 862870.
  • [37]
    Chávez, F.P., Pons, T., Delgado, J.M., Rodríguez, L. (1998) Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis. Yeast 14, 12231232.
  • [38]
    Tanaka, N., Ohuchi, N., Mukai, Y., Osaka, Y., Ohtani, Y., Tabuchi, M., Bhuiyau, M.S., Fukui, H., Harashima, S., Takegawa, K. (1998) Isolation and characterization of an invertase and its repressor genes from Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 245, 246253.
  • [39]
    Williamson, P.R., Huber, M.A., Bennett, J.E. (1993) Role of maltase in the utilization of sucrose by Candida albicans. Biochem. J. 291, 765771.
  • [40]
    Geber, A., Williamson, P.R., Rex, J.H., Sweemey, E.C., Bennett, J.E. (1992) Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization. J. Bacteriol. 174, 69926996.
  • [41]
    Dickson, R.C., Barr, K. (1983) Characterization of lactose transport in Kluyveromyces lactis. J. Bacteriol. 154, 12451251.
  • [42]
    Sreekrishna, K., Dickson, R.C. (1985) Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc. Natl. Acad. Sci. USA 82, 79097913.
  • [43]
    Das, S., Breunig, K.D., Hollenberg, C.P. (1985) A positive regulatory element is involved in the induction of the beta-galactosidase gene from Kluyveromyces lactis. EMBO J. 4, 793798.
  • [44]
    Entian, K.D. (1997) Sugar phosphorylation in yeast. In: Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications. (Zimmermann, F.K. and Entian, K.D., Eds.), pp. 67–80. Technomic, Lancaster.
  • [45]
    Herrero, P., Galindez, J., Ruiz, N., Martinez-Campa, C., Moreno, F. (1995) Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11, 137144.
  • [46]
    Hirai, M., Ohtani, E., Tanaka, A., Fukui, S. (1977) Glucose-phosphorylating enzymes of Candida yeasts and their regulation in vivo. Biochim. Biophys. Acta 480, 357366.
  • [47]
    Petit, T., Gancedo, C. (1999) Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica. Yeast 15, 15731584.
  • [48]
    Petit, T., Blázquez, M.A., Gancedo, C. (1996) Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases. FEBS Lett. 378, 185189.
  • [49]
    Cárdenas, M.L., Cornish-Bowden, A., Ureta, T. (1998) Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta 1401, 242264.
  • [50]
    Petit, T., Herrero, P., Gancedo, C. (1998) A mutation Ser213/Asn in the hexokinase 1 gene from Schizosaccharomyces pombe increases its affinity for glucose. Biochem. Biophys. Res. Commun. 251, 714719.
  • [51]
    Blázquez, M.A., Lagunas, R., Gancedo, C., Gancedo, J.M. (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 5154.
  • [52]
    Blázquez, M.A., Gancedo, J.M., Gancedo, C. (1994) Use of Yarrowia lipolytica hexokinase for the quantitative determination of trehalose-6-phosphate. FEMS Microbiol. Lett. 121, 223228.
  • [53]
    Maitra, P.K. (1971) Glucose and fructose metabolism in a phosphoglucoseisomerase less mutant of Saccharomyces cerevisiae. J. Bacteriol. 107, 759769.
  • [54]
    González Siso, M.I., Freire Picos, M.A., Cerdán, M.E. (1996) Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett. 387, 710.
  • [55]
    Sols, A. (1981) Multimodulation of enzyme activity. Curr. Top. Cell. Regul. 19, 77101.
  • [56]
    Schaaff, I., Heinischm, J., Zimmermann, F.K. (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5, 285-290.
  • [57]
    Heinisch, J. (1986) Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol. Gen. Genet. 202, 7582.
  • [58]
    Kacser, H., Burns, J.A. (1979) Molecular democracy: who shares the controls. Biochem. Soc. Trans. 7, 11491160.
  • [59]
    Bar, J., Schellenberger, W., Kopperschläger, G. (1997) Purification and characterization of phosphofructokinase from the yeast Kluyveromyces lactis. Yeast 13, 13091317.
  • [60]
    Heinisch, J., Kirchrath, L., Liesen, T., Vogelsang, K., Hollenberg, C.P. (1993) Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis. Mol. Microbiol. 8, 559570.
  • [61]
    Clifton, D., Fraenkel, D.G. (1982) Mutant studies of yeast phosphofructokinase. Biochemistry 21, 19351942.
  • [62]
    Jacoby, J., Hollenberg, P., Heinisch, J.J. (1993) Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway. Mol. Microbiol. 10, 867876.
  • [63]
    Lorberg, A., Kirchrath, L., Ernst, J.F., Heinisch, J.J. (1999) Genetic and biochemical characterization of phosphofructokinase from the opportunistic pathogenic yeast Candida albicans. Eur. J. Biochem. 260, 217226.
  • [64]
    Yuan, W., Tuttle, D.L., Shi, Y.J., Ralph, G.S., Dunn, W.A. (1997) Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J. Cell. Sci. 110, 19351945.
  • [65]
    Alvarez, V. and Jiménez, J. (1998) Un papel regulador de la fosfofructokinasa 2(PFK2) en el ciclo celular de la levadura S. pombe, XXI Congreso de la Sociedad Española de Bioquímica y Biología Molecular, P152. University, Sevilla, Spain.
  • [66]
    Mutoh, N., Hayashi, Y. (1994) Molecular cloning and nucleotide sequencing of Schizosaccharomyces pombe homologue of the class II fructose-1, 6-bisphosphate aldolase gene. Biochim. Biophys. Acta 1183, 550552.
  • [67]
    Kowal, J., Cremona, T., Horecker, B.L. (1966) Fructose 1, 6-diphosphate aldolase of Candida utilis: purification and properties. Arch. Biochem. Biophys. 114, 1323.
  • [68]
    Russell, P.R. (1985) Transcription of the triose-phosphate-isomerase gene of Schizosaccharomyces pombe initiates from a start point different from that in Saccharomyces cerevisiae. Gene 40, 125130.
  • [69]
    Compagno, C., Boschi, F., Daleffe, A., Porro, D., Ranzi, B.M. (1999) Isolation, nucleotide sequence, and physiological relevance of the gene encoding triose phosphate isomerase from Kluyveromyces lactis. Appl. Environ. Microbiol. 65, 42164219.
  • [70]
    McAlister, L., Holland, M.J. (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenases genes. J. Biol. Chem. 260, 1501915027.
  • [71]
    Shuster, J.R. Kluyveromyces lactis glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase-1 genes are linked and divergently transcribed,. Nucleic Acids Res. 18, 1990. 4271
  • [72]
    Fernandes, P.A., Sena-Esteves, M., Moradas-Ferreira, P. (1995) Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene family from Kluyveromyces marxianus. Polymerase chain reaction-single-strand conformation polymorphism as a tool for the study of multigenic families. Yeast 11, 725733.
  • [73]
    Villamon, E., Gozalbo, D., Martínez, J.P., Gil, M.L. (1999) Purification of a biologically active recombinant glyceraldehyde-3-phosphate dehydrogenase from Candida albicans. FEMS Microbiol. Lett. 179, 6165.
  • [74]
    Gil, M.L., Villamon, E., Monteagudo, C., Gozalbo, D., Martínez, J.P. (1999) Clinical strains of Candida albicans express the surface antigen glyceraldehyde-3-phosphate dehydrogenase in vitro and in infected tissues. FEMS Immunol. Med. Microbiol. 23, 229234.
  • [75]
    Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., Cregg, J.M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 3744.
  • [76]
    Chambers, A. (1997) Phosphoglycerate kinase In: Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.D., Eds.), pp. 141–156. Technomic, Lancaster.
  • [77]
    Fournier, A., Fleer, R., Yeh, P., Mayaux, J.F. The primary structure of the 3-phosphoglycerate kinase (PGK) gene from Kluyveromyces lactis,. Nucleic Acids Res. 18, 1990. 365
  • [78]
    Masuda, Y., Park, S.M., Ohkuma, M., Ohta, A., Takagi, M. (1994) Expression of an endogenous and a heterologous gene in Candida maltosa by using a promoter of a newly isolated phosphoglycerate kinase (PGK) gene. Curr. Genet. 25, 412417.
  • [79]
    Alloussh, H.M., Lopez-Ribot, J.L., Masten, B.J., Chaffin, W.L. (1997) 3-Phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. Microbiology 143, 321330.
  • [80]
    Le Dall, M., Nicaud, J., Treton, B.Y., Gaillardin, C.M. (1996) The 3-phosphoglycerate kinase gene of the yeast Yarrowia lipolytica de-represses on gluconeogenic substrates. Curr. Genet. 29, 446456.
  • [81]
    Walter, R.A., Nairn, J., Duncan, D., Price, N.C., Kelly, S.M., Rigden, D.J., Fothergill-More, L.A. (1999) The role of the C-terminal region in phosphoglycerate mutase. Biochem. J. 337, 8995.
  • [82]
    Nairn, J., Price, N.J., Fothergill-Gilmore, L.A., Walker, G.A., Fothergill, J.E., Dunbar, B. (1994) The amino acid sequence of the small monomeric phosphoglycerate mutase from the fission yeast Schizosaccharomyces pombe. Biochem. J. 297, 603608.
  • [83]
    Holland, M.J., Holland, J.P. (1978) Isolation and identification of yeast messenger nucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. Biochemistry 17, 49004907.
  • [84]
    McAlister, L., Holland, M.J. (1982) The targeted deletion of a yeast enolase structural gene. J. Biol. Chem. 257, 71817188.
  • [85]
    Mason, A.B., Buckley, H.R., Gorman, J.A. (1993) Molecular cloning and characterization of the Candida albicans enolase gene. J. Bacteriol. 175, 26322639.
  • [86]
    Postlethwait, P., Sundstrom, P. (1995) Genetic organization and mRNA expression of enolase genes of Candida albicans. J. Bacteriol. 177, 17721779.
  • [87]
    Jackson, J.C., Lopes, J.M. (1995) A cDNA from Schizosaccharomyces pombe encoding a putative enolase. Gene 154, 109113.
  • [88]
    Boles, E., Schulte, F., Miosga, T., Freidel, K., Schluter, E., Zimmermann, F.K., Hollenberg, C.P., Heinisch, J.J. (1997) Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J. Bacteriol. 179, 29872993.
  • [89]
    Nairn, J., Smith, S., Allison, P.J., Rigden, D., Fothergill-More, L.A., Price, N.C. (1995) Cloning and sequencing of a gene encoding pyruvate kinase from Schizosaccharomyces pombe: implications for quaternary structure and regulation of the enzyme. FEMS Microbiol. Lett. 134, 221226.
  • [90]
    Strick, C.A., James, L.C., O'Donnell, M.M., Gollaher, M.G., Franke, A.E. (1992) The isolation and characterization of the pyruvate kinase encoding gene from the yeast Yarrowia lipolytica. Gene 118, 6572.
  • [91]
    Strick, C.A., James, L.C., O'Donnell, M.M., Gollaher, M.G., Franke, A.E. (1994) The isolation and characterization of the pyruvate kinase-encoding gene from the yeast Yarrowia lipolytica. Gene 140, 141143.
  • [92]
    Gancedo, J.M., Gancedo, C., Sols, A. (1967) Regulation of the concentration or activity of pyruvate kinase in yeasts and its relationship to gluconeogenesis. Biochem. J. 102, 23C25C.
  • [93]
    Hirai, M., Tanaka, A., Fukui, S. (1975) Difference in pyruvate kinase regulation among three groups of yeasts. Biochim. Biophys. Acta 391, 282291.
  • [94]
    Pronk, J.T., Steensma, H.Y., van Dijken, J.P. (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 16071633.
  • [95]
    Steensma, H.Y., Holterman, L., Dekker, I., van Sluis, C.A., Wenzel, T.J. (1990) Molecular cloning of the gene for the E1α subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Eur. J. Biochem. 191, 769774.
  • [96]
    Behal, R.H., Browning, K.S., Reed, L.J. (1989) Nucleotide and deduced amino acid sequence of the alpha subunit of yeast pyruvate dehydrogenase. Biochem. Biophys. Res. Commun. 164, 941946.
  • [97]
    Miran, S.G., Lawson, J.E., Reed, L.J. (1993) Characterization of the PDHβ1, the structural gene for the pyruvate dehydrogenase β subunit from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 12521256.
  • [98]
    Niu, X.-D., Browning, K.S., Behal, R.H., Reed, L.J. (1988) Cloning and nucleotide sequence of the gene for dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 85, 75467550.
  • [99]
    Ross, J., Reid, G.A., Dawes, I.A. (1988) The nucleotide sequence of the LDP1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J. Gen. Microbiol. 134, 11311139.
  • [100]
    Nalecz, M.J., Nalecz, K.A., Azzi, A. (1991) Purification and functional characterization of the pyruvate (monocarboxylate) carrier from baker's yeast mitochondria (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1079, 8795.
  • [101]
    Zeeman, A.M., Luttik, M.A., Pronk, J.T., van Dijken, J.P., Steensma, H.Y. (1999) Impaired growth on glucose of a pyruvate dehydrogenase-negative mutant of Kluyveromyces lactis is due to a limitation in mitochondrial acetyl-coenzyme A uptake. FEMS Microbiol. Lett. 177, 2328.
  • [102]
    Tizzani, L., Meacock, P., Frontali, L., Wesolowski-Louvel, M. (1998) The RAG3 gene of Kluyveromyces lactis is involved in the transcriptional regulation of genes coding for enzymes implicated in pyruvate utilization and genes of the biosynthesis of thiamine pyrophosphate. FEMS Microbiol. Lett. 168, 2530.
  • [103]
    Hohmann, S. (1993) Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 241, 657666.
  • [104]
    Cavan, G., MacDonald, D. (1995) Cloning and sequence of a gene encoding the pyruvate dehydrogenase E1 beta subunit of Schizosacchromyces pombe. Gene 152, 117120.
  • [105]
    Cavan, G., MacDonald, D. (1994) Mutations which reduce levels of pyruvate dehydrogenase in Schizosaccharomyces pombe cause a requirement for arginine or glutamine. FEMS Microbiol. Lett. 124, 361365.
  • [106]
    Passoth, V., Zimmermann, M., Klinner, U. (1996) Peculiarities of the regulation of fermentation and respiration in the Crabtree-negative, xylose fermenting yeast Pichia stipitis. Appl. Biochem. Biotechnol. 57–58, 201212.
  • [107]
    Hohmann, S. (1997) Pyruvate decarboxylases In: Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. and Entian, K.D., Eds.), pp. 187–212. Technomic, Lancaster.
  • [108]
    Bianchi, M.M., Tizzani, L., Destruelle, M., Frontali, L., Wesolowski-Louvel, M. (1996) The ‘petite negative’ yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol. Microbiol. 19, 2736.
  • [109]
    Prior, C., Tizzani, L., Fukuhara, H., Wesolowski-Louvel, M. (1996) RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis. Mol. Microbiol. 20, 765772.
  • [110]
    Kaiser, B., Munder, T., Saluz, H.P., Kunkel, W., Eck, R. (1999) Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15, 585591.
  • [111]
    Lu, P., Davis, B.P., Jeffries, T.W. (1998) Cloning and characterization of two pyruvate decarboxylase genes from Pichia stipitis CBS 6054. Appl. Environ. Microbiol. 64, 9497.
  • [112]
    Flikweert, M.T., van der Zanden, K., Janssen, W.M.P.T.M., Steensma, H.Y., van Dijken, J.P., Pronk, J.T. (1996) Pyruvate decarboxylase an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12, 247257.
  • [113]
    van den Berg, M.A., Steensma, H.Y. (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur. J. Biochem. 231, 704713.
  • [114]
    Meaden, P.G., Dickinson, F.M., Mifsud, A., Tessier, W., Westwater, J., Bussey, H., Midgley, M. (1997) The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast 13, 13191327.
  • [115]
    de Jong-Gubbels, P. (1998) Metabolic Fluxes at the Interface of Glycolysis and TCA Cycle in Saccharomyces cerevisiae, Ph.D. Thesis. University Delft, The Netherlands.
  • [116]
    Velot, C., Lebreton, S., Morgunov, I., Usher, K.C., Srere, P.A. (1999) Metabolic defects of mislocalized mitochondrial and peroxisomal citrate synthases in the yeast Saccharomyces cerevisiae. Biochemistry 38, 1619516204.
  • [117]
    Jia, Y.K., Becam, A.M., Herbert, C.J. (1997) The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase. Mol. Microbiol. 24, 5359.
  • [118]
    Ueda, M., Sanuki, S., Kawachi, H., Shimizu, K., Atomi, H., Tanaka, A. (1997) Characterization of the intron-containing citrate synthase gene from the alkanotrophic yeast Candida tropicalis: cloning and expression in Saccharomyces cerevisiae. Arch. Microbiol. 168, 815.
  • [119]
    Gangloff, S.P., Marguet, D., Lauquin, G.J. (1990) Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol. Cell. Biol. 10, 35513561.
  • [120]
    Foury, F. (1999) Low iron concentration and aconitase deficiency in a yeast frataxin homologue deficient strain. FEBS Lett. 456, 281284.
  • [121]
    Cupp, J.R., McAlister-Henn, L. (1992) Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. J. Biol. Chem. 267, 1641716423.
  • [122]
    Cupp, J.R., McAlister-Henn, L. (1991) NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J. Biol. Chem. 266, 2219922205.
  • [123]
    Zhao, W.N., McAlister-Henn, L. (1996) Expression and gene disruption analysis of the isocitrate dehydrogenase family in yeast. Biochemistry 35, 78737878.
  • [124]
    Minard, K.I., Jennings, G.T., Loftus, T.M., Xuan, D., McAlister-Henn, L. (1998) Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J. Biol. Chem. 273, 3148631493.
  • [125]
    Barel, I., MacDonald, D.W. (1993) Enzyme defects in glutamate-requiring stains of Schizosaccharomyces pombe. FEMS Microbiol. Lett. 113, 267272.
  • [126]
    Stucka, R., Dequin, S., Salmon, J.M., Gancedo, C. (1991) DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Mol. Gen. Genet. 229, 307315.
  • [127]
    Walker, M.E., Val, D.L., Rohde, M., Devenish, R.J., Wallace, J.C. (1991) Yeast pyruvate carboxylase: identification of two genes encoding isoenzymes. Biochem. Biophys. Res. Commun. 176, 12101217.
  • [128]
    van Urk, H., Schippe, D., Breedveld, G.J., Mak, P.R., Scheffers, W.A., van Dijken, J.P. (1989) Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim. Biophys. Acta 992, 7886.
  • [129]
    Menéndez, J., Delgado, J., Gancedo, C. (1998) Isolation of the Pichia pastoris PYC1 gene encoding pyruvate carboxylase and identification of a suppressor of the pyc phenotype. Yeast 14, 647654.
  • [130]
    van Dijk, R., van der Heide, M., van der Klei, I.J., Faber, K.N. and Veenhuis, M. (1998) Principles of flavoprotein assembly/activation in the yeast Hansenula polymorpha, EC Framework IV Symposium, Yeast as a Cell Factory, P131. University, Vlaardingen, The Netherlands.
  • [131]
    Fernández, E., Moreno, F., Rodicio, R. (1992) The ICL1 gene from Saccharomyces cerevisiae. Eur. J. Biochem. 204, 983990.
  • [132]
    Duntze, W., Neumann, D., Gancedo, J.M., Atzpodien, W., Holzer, H. (1968) Studies on the regulation and localization of the glyoxylate cycle enzymes in S. cerevisiae. Eur. J. Biochem. 10, 8389.
  • [133]
    McCammon, M.T., Veenhuis, M., Trapp, S.B., Goodman, J.M. (1990) Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J. Bacteriol. 172, 58165827.
  • [134]
    Atomi, H., Ueda, M., Hikida, M., Hishida, T., Teranishi, Y., Tanaka, A. (1990) Peroxisomal isocitrate lyase of the n-alkane-assimilating yeast Candida tropicalis: gene analysis and characterization. J. Biochem. 107, 262266.
  • [135]
    Barth, G., Scheuber, T. (1993) Cloning of the isocitrate lyase gene (ICL1) fromYarrowia lipolytica and characterization of the deduced protein. Mol. Gen. Genet. 241, 422430.
  • [136]
    Umemura, K., Atomi, H., Kanai, T., Teranishi, Y., Ueda, M., Tanaka, A. (1995) A novel promoter, derived from the isocitrate lyase gene of Candida tropicalis, inducible with acetate in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 43, 489492.
  • [137]
    Matsuoka, M., Ueda, M., Aiba, S. (1980) Role and control of isocitrate lyase in Candida lipolytica. J. Bacteriol. 144, 692697.
  • [138]
    Okada, H., Ueda, M., Tanaka, A. (1986) Purification of peroxisomal malate synthase from alkane-grown Candida tropicalis and some properties of the purified enzyme. Arch. Microbiol. 144, 137141.
  • [139]
    Hikida, M., Atomi, H., Fukuda, Y., Aoki, A., Hishida, T., Teranishi, Y., Ueda, M., Tanaka, A. (1991) Presence of two transcribed malate synthase genes in an n-alkane-utilizing yeast, Candida tropicalis. J. Biochem. 110, 909914.
  • [140]
    Bruinenberg, P.G., Blaauw, M., Kazemier, B., Ab, G. (1990) Cloning and sequencing of the malate synthase gene from Hansenula polymorpha. Yeast 6, 245254.
  • [141]
    Hartig, A., Simon, M.M., Schuster, T., Daugherty, J.R., Yoo, H.S., Cooper, T.G. (1992) Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res. 20, 56775686.
  • [142]
    Flury, U., Heer, B., Fiechter, A. (1974) Regulatory and physicochemical properties of two isoenzymes of malate dehydrogenase from Schizosaccharomyces pombe. Biochim. Biophys. Acta 341, 465483.
  • [143]
    Eraso, P., Gancedo, J.M. (1984) Catabolite repression in yeasts is not associated with low levels of cAMP. Eur. J. Biochem. 141, 195198.
  • [144]
    Small, W.C., McAlister-Henn, H. (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J. Bacteriol. 180, 40514055.
  • [145]
    Luttik, M.A.H., Overkamp, K.M., Kötter, P., de Vries, S., van Dijken, J.P., Pronk, J.T. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273, 2425924534.
  • [146]
    Kerschner, S.J., Okun, J.G., Brandt, U. (1999) A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J. Cell Sci. 112, 23472354.
  • [147]
    Marres, C.A.M., de Vries, S., Grivell, L.A. (1991) Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH-ubiquinone oxidoreductase of mitochondira from Saccharomyces cerevisiae. Eur. J. Biochem. 195, 857862.
  • [148]
    Larsson, C., Pahlman, I.L., Ansell, R., Rigoulet, M., Adler, L., Gustafsson, L. (1998) The importance of the glycerol-3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14, 347358.
  • [149]
    de Vries, S., Marres, C.A. (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895, 205239.
  • [150]
    Buschges, R., Bahrenberg, G., Zimmermann, M., Wolf, K. (1994) NADH:ubiquinone oxidoreductase in obligate aerobic yeasts. Yeast 10, 475479.
  • [151]
    Adrian, G.S., McCammon, M.T., Montgomery, D.L., Douglas, M.G. (1986) Sequences required for delivery and localization of the ADP/ATP translocator to the mitochondrial inner membrane. Mol. Cell. Biol. 6, 626634.
  • [152]
    Lawson, J.E., Douglas, M.G. (1988) Separate genes encode functionally equivalent carrier proteins in Saccharomyces cerevisiae. J. Biol. Chem. 263, 1481214818.
  • [153]
    Kolarov, J., Kolarova, N., Nelson, N. (1990) A third ADP/ATP translocator gene in yeast. J. Biol. Chem. 265, 1271112716.
  • [154]
    Drgon, T., Sabova, L., Gavurnikova, G., Kolarov, J. (1992) Yeast ADP/ATP carrier (AAC) proteins exhibit similar enzymatic properties but their deletion produces different phenotypes. FEBS Lett. 304, 277280.
  • [155]
    Viola, A.M., Galeotti, C.L., Goffrini, P., Ficarelli, A., Ferrero, I. (1995) A Kluyveromyces lactis gene homologue to AAC2 complements the Saccharomyces cerevisiae op1 mutation. Curr. Genet. 27, 229233.
  • [156]
    Nebohacova, M., Mentel, M., Nosek, J., Kolarov, J. (1999) Isolation and expression of the gene encoding mitochondrial ADP/ATP carrier (AAC) from the pathogenic yeast Candida parapsilosis. Yeast 15, 12371242.
  • [157]
    Couzin, N., Trezeguet, V., Le Saux, A., Lauquin, G.J. (1996) Cloning of the gene encoding the mitochondrial adenine nucleotide carrier of Schizosaccharomyces pombe by functional complementation in Saccharomyces cerevisiae. Gene 171, 113117.
  • [158]
    Viola, A.M., Lodi, T., Ferrero, I. (1999) A Klaac null mutant of Kluyveromyces lactis is complemented by a single copy of the Saccharomyces cerevisiae AAC1 gene. Curr. Genet. 36, 2936.
  • [159]
    Trezeguet, V., Zeman, I., David, C., Lauquin, G.J., Kolarov, J. (1999) Expression of the ADP/ATP carrier encoding genes in aerobic yeasts; phenotype of an ADP/ATP carrier deletion mutant of Schizosaccharomyces pombe. Biochim. Biophys. Acta 1410, 229236.
  • [160]
    Visser, W., van der Baan, A.A., Batenburg-van der Vegte, W., Scheffers, W.A., Kramer, R., van Dijken, J.P. (1994) Involvement of mitochondria in the assimilatory metabolism of anaerobic Saccharomyces cerevisiae cultures. Microbiology 140, 30393046.
  • [161]
    Schonbaum, G.R., Bonner, W.D., Storey, B.T., Bahr, J.T. (1971) Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant. Physiol. 47, 124128.
  • [162]
    Henry, M.F., Nyns, E.J. (1975) Cyanide insensitive respiration. An alternative mitochondrial pathway. Sub-Cell. Biochem. 4, 165.
  • [163]
    Vanlerberghe, G.C., McIntosh, L. (1997) Alternative oxidase: from gene to function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 703734.
  • [164]
    Heritage, J., Tribe, M.A., Whittaker, P.A. (1981) The respiration pathways of wild-type and petite mutants of Kluyveromyces lactis. Microbios 30, 3745.
  • [165]
    Minagawa, N., Sakajo, S., Komiyama, T., Yoshimoto, A. (1990) A 36 kDa mitochondrial protein is responsible for cyanide resistant respiration in Hansenula anomala. FEBS Lett. 264, 149152.
  • [166]
    Minagawa, N., Sakajo, S., Yoshimoto, A. (1991) Sulfur compounds induce alternative oxidation in Hansenula anomala. Agric. Biol. Chem. 61, 15731574.
  • [167]
    Sakajo, S., Minagawa, N., Komiyama, T., Yoshimoto, A. (1991) Molecular cloning of cDNA from antimycinA-inducible mRNA and its role in cyanide-resistant respiration in Hansenula anomala. Biochim. Biophys. Acta 1090, 102108.
  • [168]
    Huh, W.K., Kang, S.O. (1999) Molecular cloning and functional expression of alternative oxidase in Candida albicans. J. Bacteriol. 181, 40984102.
  • [169]
    Henry, M.F., Hamaide-Deplus, M.C., Henry, E.J. (1974) Cyanide insensitive respiration of Candida lipolytica. Antonie van Leeuwenhoek 40, 7991.
  • [170]
    Medentsev, A.G., Akimenko, V.K. (1999) Development and activation of cyanide-resistant respiration in the yeast Yarrowia lipolytica. Biochemistry (Moscow) 64, 945951.
  • [171]
    Jeppsson, H., Alexander, N.J., Hahn-Hagerdal, B.C. (1995) Existence of cyanide insensitive respiration in the yeast Pichia stipitis and its possible influence on product formation during xylose utilization. Appl. Env. Microb. 61, 25962600.
  • [172]
    Albury, M.S., Dudley, P., Watts, F.Z., Moore, A.L. (1996) Targeting the plant alternative oxidase protein to Schizosaccharomyces pombe mitochondria confers cyanide-insensitive respiration. J. Biol. Chem. 271, 1706217066.
  • [173]
    Affourtit, C., Albury, M.S., Krab, K., Moore, A.L. (1999) Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe. J. Biol. Chem. 274, 62126218.
  • [174]
    Gancedo, J.M., Lagunas, R. (1973) Contribution of the pentose phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: a critical analysis on the use of labelled glucose. Plant. Sci. Lett. 1, 193200.
  • [175]
    Bruinenberg, P.M., van Dijken, J.P., Scheffers, W.A. (1983) An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol. 129, 965971.
  • [176]
    Tsai, C.S., Chen, Q. (1998) Purification and kinetic characterizaton of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe. Biochem. Cell. Biol. 76, 107113.
  • [177]
    Domagk, G.F., Chilla, R. (1975) Glucose-6-phosphate dehydrogenase from Candida utilis. Methods Enzymol. 41, 205208.
  • [178]
    Jeffery, J., Persson, B., Wood, I., Bergman, T., Jeffery, R., Jornvall, H. (1993) Glucose-6-phosphate dehydrogenase. Structure–function relationships and the Pichia jadinii enzyme structure. Eur. J. Biochem. 212, 4149.
  • [179]
    Thomas, D., Cherest, H., Surdin-Kerjan, Y. (1991) Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 10, 547553.
  • [180]
    Brodie, A.F., Lipmann, F. (1955) Identification of a gluconolactonase. J. Biol. Chem. 212, 677685.
  • [181]
    Kanagasundaram, V., Scopes, R. (1992) Isolation and characterization of the gene encoding gluconolactonase from Zymomonas mobilis. Biochim. Biophys. Acta 1171, 198200.
  • [182]
    Kobayashi, M., Shinohara, M., Sakoh, C., Kataoka, M., Shimizu, S. (1998) Lactone-ring-cleaving enzyme: genetic analysis, novel RNA editing, and evolutionary implications. Proc. Natl. Acad. Sci. USA 95, 1278712792.
  • [183]
    Tsai, C.S., Shi, J.L., Ye, H.G. (1995) Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe. Arch. Biochem. Biophys. 316, 163168.
  • [184]
    Tsai, C.S., Chen, Q. (1998) Purification and kinetic characterization of 6-phosphogluconate dehydrogenase from Schizosaccharomyces pombe. Biochem. Cell. Biol. 76, 637644.
  • [185]
    Rippa, M., Signorini, M. (1975) 6-Phosphogluconate dehydrogenase from Candida utilis. Methods Enzymol. 41, 237240.
  • [186]
    Lobo, Z., Maitra, P.K. (1982) Pentose phosphate pathway mutants of yeast. Mol. Gen. Genet. 185, 367368.
  • [187]
    Domagk, G.F., Doering, K.M. d-Ribose-5-phosphate isomerase from Candida utilis, Methods Enzymol. 41, 1975. 427429.
  • [188]
    Horitsu, H., Sasaki, I., Kikuchi, T., Suzuki, H., Sumida, M., Tomoyeda, M. (1976) Purification, properties and structure of ribose-5-phosphate ketol isomerase from Candida utilis. Agric. Biol. Chem. 40, 257264.
  • [189]
    Wood, T. (1981) The preparation of transketolase free from d-ribulose-5-phosphate-3-epimerase. Biochim. Biophys. Acta 659, 233243.
  • [190]
    Jakoby, J.J., Heinisch, J.J. (1997) Analysis of a transketolase gene from Kluyveromyces lactis reveals that the yeast enzymes are more related to transketolases of prokaryotic origins than to those of higher eukaryotes. Curr. Genet. 31, 1521.
  • [191]
    Metzger, M.H., Hollenberg, C.P. (1994) Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant. Appl. Microbiol. Biotechnol. 42, 319325.
  • [192]
    Fletcher, T.S., Kwee, I.L., Nakada, T., Largamn, C., Martin, B.M. (1992) DNA sequence of the yeast transketolase gene. Biochemistry 31, 18921896.
  • [193]
    Bruinenberg, P.M., de Bot, P.H.M., van Dijken, J.P., Scheffers, W.A. (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeast. Appl. Microbiol. Biotechnol. 19, 256260.
  • [194]
    Mayr, P., Bruggler, K., Kulbe, K.D., Nidetzky, B. d-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B Biomed. Sci. Appl. 14, 2000. 195202.
  • [195]
    Billard, P., Menart, S., Fleer, R., Bolotin-Fukuhara, M. (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162, 9397.
  • [196]
    Kötter, P., Ciriacy, M. (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776783.
  • [197]
    Kim, Y.S., Kim, S.Y., Kim, J.H., Kim, S.C. (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. J. Biotechnol. 67, 159171.
  • [198]
    Ho, N.W., Lin, F.P., Huang, S., Andrews, P.C., Tsao, G.T. (1990) Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb. Technol. 12, 3339.
  • [199]
    Neuhauser, W., Haltrich, D., Kulbe, K.D., Nidetzky, B. (1997) NAD(P)H-dependent aldolase reductase from the xylose assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Biochem. J. 326, 683692.
  • [200]
    Handumrongkul, C., Ma, D.P., Silva, J.L. (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl. Microbiol. Biotechnol. 49, 399404.
  • [201]
    Zaragoza, O., Rodríguez, C., Gancedo, C. (2000) Isolation and characterization of the MIG1 gene from Candida albicans and effect of its disruption on catabolite repression. J. Bacteriol. 182, 320326.
  • [202]
    Richard, P., Toivari, M.H., Penttila, M. (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett. 457, 135138.
  • [203]
    Waldfrisson, M., Anderlund, M., Bao, X., Hahn-Hägerdal, B. (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl. Microbiol. Technol. 48, 218224.
  • [204]
    Denis, C.L., Ferguson, J., Young, E.T. (1983) mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem. 258, 11651171.
  • [205]
    Ciriacy, M. (1997) Alcohol dehydrogenases In: Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications. (Zimmermann, F.K. and Entian, K.D., Eds.), pp. 213–224. Technomic, Lancaster.
  • [206]
    Megnet, R. (1967) Mutants partially deficient in alcohol dehydrogenase in Schizosaccharomyces pombe. Arch. Biochem. Biophys. 121, 194201.
  • [207]
    Russell, P., Hall, B.D. (1983) The primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 258, 143149.
  • [208]
    Bozzi, A., Saliola, M., Falcone, C., Bossa, F., Martini, F. (1997) Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis. Biochim. Biophys. Acta 1339, 133142.
  • [209]
    Mazzoni, C., Saliola, M., Falcone, C. (1992) Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. Mol. Microbiol. 6, 22792286.
  • [210]
    Saliola, M., Falcone, C. (1995) Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation. Mol. Gen. Genet. 249, 665672.
  • [211]
    Bertram, G., Swoboda, R.K., Gooday, G.W., Gow, N.A., Brown, A.J. (1996) Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Yeast 12, 115127.
  • [212]
    Cho, J.Y., Jeffries, T.W. (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl. Environ. Microbiol. 64, 13501358.
  • [213]
    Passoth, V., Schafer, B., Liebel, B., Weierstall, T., Klinner, U. (1998) Molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH. Yeast 14, 13111325.
  • [214]
    Barth, G., Kunkel, W. (1979) Alcohol dehydrogenase (ADH) in yeasts. II. NAD+ and NADP+-dependent alcohol dehydrogenases in Saccharomycopsis lipolytica. Z. Allg. Mikrobiol. 19, 381390.
  • [215]
    Navarro-Aviño, J.P., Prasad, R., Miralles, V.J., Benito, R.M., Serrano, R. (1999) A proposal for nomenclature of aldehyde deydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829842.
  • [216]
    Tessier, W.D., Meaden, P.G., Dickinson, F.M., Midgley, M. (1998) Identification and disruption of the gene encoding the K+-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 164, 2934.
  • [217]
    De Virgilio, C., Bürckert, N., Barth, G., Neuhaus, J.M., Boller, T., Wiemken, A. (1992) Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8, 10431051.
  • [218]
    van den Berg, M.A., de Jong-Gubbels, P., Kortland, C.J., van Dijken, J.P., Pronk, J.T., Steensma, H.Y. (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271, 2895328959.
  • [219]
    Kujau, M., Weber, H., Barth, G. (1992) Characterization of mutants of the yeast Yarrowia lipolytica defective in acetyl-coenzyme A synthetase. Yeast 8, 193203.
  • [220]
    Tsai, C.S., Mitton, K.P., Johnson, B.F. (1989) Acetate assimilation by the fission yeast Schizosaccharomyces pombe. Biochem. Cell. Biol. 67, 464467.
  • [221]
    Drewke, C., Thielen, J., Ciriacy, M. (1990) Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J. Bacteriol. 172, 39093917.
  • [222]
    Saliola, M., Bellardi, S., Marta, I., Falcone, C. (1994) Glucose metabolism and ethanol production in adh multiple and null mutants of Kluyveromyces lactis. Yeast 10, 11331140.
  • [223]
    Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M., Adler, L. (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16, 21792187.
  • [224]
    Ohmiya, R., Yamada, H., Nakashima, K., Aiba, H., Mizuno, T. (1995) Osmoregulation of fission yeast: cloning of two distinct genes encoding glycerol-3-phosphate dehydrogenase, one of which is responsible for osmotolerance for growth. Mol. Microbiol. 18, 963973.
  • [225]
    Yamada, H., Ohmiya, R., Aiba, H., Mizuno, T. (1996) Construction and characterization of a deletion mutant of gpd2 that encodes an isozyme of NADH-dependent glycerol-3-phosphate dehydrogenase in fission yeast. Biosci. Biotechnol. Biochem. 60, 918920.
  • [226]
    Norbeck, J., Pahlman, A.K., Akhtar, N., Blomberg, A., Adler, L. (1996) Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271, 1387513881.
  • [227]
    Gancedo, C., Gancedo, J.M., Sols, A. (1968) Glycerol metabolism in yeasts. Pathways of utilization and production. Eur. J. Biochem. 5, 165172.
  • [228]
    Sprague, G.F., Cronan, J.E. (1977) Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. J. Bacteriol. 129, 13351342.
  • [229]
    May, J.W., Marshall, J.H., Sloan, J. (1982) Glycerol utilization by Schizosaccharomyces pombe: phosphorylation of dihidroxyacetone by a specific kinase as the second step. J. Gen. Microbiol. 128, 17631766.
  • [230]
    Gancedo, C., Llobell, A., Ribas, J.C., Luchi, F. (1986) Isolation and characterization of mutants from Schizosaccharomyces pombe defective in glycerol catabolism. Eur. J. Biochem. 159, 171174.
  • [231]
    Norbeck, J., Blomberg, A. (1997) Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272, 55445554.
  • [232]
    Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein, J.M., Hohmann, S. (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14, 13601371.
  • [233]
    Tamas, M.J., Luyten, K., Sutherland, F.C., Hernandez, A., Albertyn, J., Valadi, H., Li, H., Prior, B.A., Kilian, S.G., Ramos, J., Gustafsson, L., Thevelein, J.M., Hohmann, S. (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31, 10871104.
  • [234]
    Lages, F., Lucas, C. (1995) Characterization of a glycerol/H+ symport in the halotolerant yeast Pichia sorbitophila. Yeast 11, 111119.
  • [235]
    Lages, F., Silva-Graça, M., Lucas, C. (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145, 25772585.
  • [236]
    Vassarotti, A., Friessen, J.D. (1985) Isolation of the fructose-1,6-bisphosphatase gene of the yeast Schizosaccharomyces pombe. Evidence for transcriptional regulation. J. Biol. Chem. 260, 63486353.
  • [237]
    Zaror, I., Marcus, F., Moyer, D.L., Tung, J., Shuster, J.R. (1993) Fructose-1, 6-bisphosphatase of the yeast Kluyveromyces lactis. Eur. J. Biochem. 212, 193199.
  • [238]
    Traniello, S., Calcagno, M., Pontremoli, S. (1971) Fructose 1,6-diphosphatase and sedoheptulose 1,7-diphosphatase from Candida utilis: purification and properties. Arch. Biochem. Biophys. 146, 603610.
  • [239]
    Hoffman, C.S., Winston, F. (1991) Glucose repression of transcription of theSchizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev. 5, 561571.
  • [240]
    Stucka, R., Valdés-Hevia, M.D., Schwarzlose, C., Feldmann, H., Gancedo, C. Nucleotide sequence of the phosphoenolpyruvate carboxykinase gene from Saccharomyces cerevisiae,. Nucleic Acids Res. 16, 1988. 10926
  • [241]
    Valdés-Hevia, M.D., de la Guerra, R., Gancedo, C. (1989) Isolation and characterization of the gene encoding phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. FEBS Lett. 258, 313316.
  • [242]
    Kitamoto, H.K., Ohmono, S., Imura, Y. (1998) Isolation and nucleotide sequence of the gene encoding phosphoenolpyruvate carboxykinase from Kluyveromyces lactis. Yeast 14, 963967.
  • [243]
    Leuker, C.E., Sonneborn, A., Delbruck, S., Ernst, J.F. (1997) Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192, 235240.
  • [244]
    Haarasilta, S., Taskinen, L. (1977) Location of three key enzymes of gluconeogenesis in baker's yeast. Arch. Microbiol. 113, 159161.
  • [245]
    Gancedo, C., Schwerzmann, K. (1976) Inactivation by glucose of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Arch. Microbiol. 109, 221225.
  • [246]
    Osothsilp, C., Subden, R.E. (1986) Malate transport in Schizosaccharomyces pombe. J. Bacteriol. 168, 14391443.
  • [247]
    Kuczynski, J.T., Radler, F. (1982) The anaerobic metabolism of malate of Saccharomyces bailii and the partial purification and characterization of malic enzyme. Arch. Microbiol. 131, 266270.
  • [248]
    Baranowski, K., Radler, F. (1984) The glucose-dependent transport of l-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek 50, 329340.
  • [249]
    Viljoen, M., Volschenk, H., Young, R.A., van Vuuren, H.J. (1999) Transcriptional regulation of the Schizosaccharomyces pombe malic enzyme gene, mae2. J. Biol. Chem. 274, 99699975.
  • [250]
    Boles, E., de Jong-Gubbels, P., Pronk, J.T. (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J. Bacteriol. 180, 28752882.
  • [251]
    Gancedo, J.M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334361.
  • [252]
    Zaragoza, O., Lindley, C., Gancedo, J.M. (1999) Cyclic AMP can decrease expression of genes subject to catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 181, 26402642.
  • [253]
    Entian, K.D. (1980) Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178, 633637.
  • [254]
    Espinel, A.E., Gomez-Toribio, V., Peinado, J.M. (1996) The inactivation of hexokinase activity does not prevent glucose repression in Candida utilis. FEMS Microbiol. Lett. 135, 327332.
  • [255]
    Goffrini, P., Ficarelli, A., Donini, C., Lodi, T., Puglisi, P.P., Ferrero, I. (1996) FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis are homologous to GAL83 and SNF1 of Saccharomyces cerevisiae. Curr. Genet. 29, 316326.
  • [256]
    Petter, R., Chang, Y.C., Kwon-Chung, K.J. (1997) A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect. Immun. 65, 49094917.
  • [257]
    Kanai, T., Ogawa, K., Ueda, M., Tanaka, A. (1999) Expression of the SNF1 gene from Candida tropicalis is required for growth on various carbon sources, including glucose. Arch. Microbiol. 172, 256263.
  • [258]
    Petter, R., Kwon-Chung, K.J. (1996) Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata. Infect. Immun. 64, 52695273.
  • [259]
    Lundin, M., Nehlin, J.O., Ronne, H. (1994) Importance of a flanking AT-rich region in target site recognition by the GC box containing zinc finger protein Mig1. Mol. Cell. Biol. 14, 19791985.
  • [260]
    Tzamarias, D., Struhl, K. (1994) Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369, 758760.
  • [261]
    Dong, J., Dickson, R.C. (1997) Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1 dependent pathway that modulates galactokinase (GAL1) expression. Nucleic Acids Res. 25, 36573664.
  • [262]
    Mukai, Y., Matsuo, E., Roth, S.Y., Harashima, S. (1999) Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1p homolog. Mol. Cell. Biol. 19, 84618468.
  • [263]
    Braun, B.R., Johnson, A.D. (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105108.
  • [264]
    Portillo, F. (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim. Biophys. Acta 1469, 3142.
  • [265]
    Dufour, J.P., Goffeau, A. (1978) Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. J. Biol. Chem. 253, 70267032.
  • [266]
    Ghislain, M., Schlesser, A., Goffeau, A. (1987) Mutation of a conserved glycine residue modifies the vanadate sensitivity of the plasma membrane. H+-ATPase from Schizosaccharomyces pombe. J. Biol. Chem. 262, 1754917555.
  • [267]
    Ghislain, M., De Sadeleer, M., Goffeau, A. (1992) Altered plasma membrane H(+)-ATPase from the Dio-9-resistant pma1-2 mutant of Schizosaccharomyces pombe. Eur. J. Biochem. 209, 275279.
  • [268]
    Balcells, L., Martin, R., Ruiz, M.C., Gómez, N., Ramos, J., Ariño, J. (1998) The Pzh1 protein phosphatase and the Spm1 protein kinase are involved in the regulation of the plasma membrane H+-ATPase in fission yeast. FEBS Lett. 435, 241244.
  • [269]
    Miranda, M., Ramirez, J., Peña, A., Coria, R. (1995) Molecular cloning of the plasma membrane (H+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake. J. Bacteriol. 177, 23602367.
  • [270]
    Gupta, P., Mahanty, S.K., Ansari, S., Prasad, R. (1991) Isolation, purification and kinetic characterization of plasma membrane H(+)-ATPase of Candida albicans. Biochem. Int. 24, 907915.
  • [271]
    Monk, B.C., Niimi, M., Sheperd, M.G. (1993) The Candida albicans plasma membrane and H(+)-ATPase during yeast growth and germ tube formation. J. Bacteriol. 175, 55665574.
  • [272]
    Kluyver, A.J. (1924) Eenheid en verscheidenheid in de stofwisseling der microben. Chem. Weekblad 21, 266277.
  • [273]
    Ho, N.W.Y., Chen, Z., Brainard, A.P. (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environm. Microbiol. 64, 18521859.