SEARCH

SEARCH BY CITATION

References

  • [1]
    Steed, P., Murray, R.G. (1966) The cell wall and cell division of Gram-negative bacteria. Can. J. Microbiol. 12, 263270.
  • [2]
    Poindexter, J.S., Hagenzieker, J.G. (1981) Constriction and septation during cell division in caulobacters. Can. J. Microbiol. 27, 704719.
  • [3]
    Nanninga, N. (1998) Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 110129.
  • [4]
    Rothfield, L., Justice, S., Garcia-Lara, J. (1999) Bacterial cell division. Annu. Rev. Genet. 33, 423448.
  • [5]
    Margolin, W. (1998) A green light for the bacterial cytoskeleton. Trends Microbiol. 6, 233238.
  • [6]
    Bramhill, D. (1997) Bacterial cell division. Annu. Rev. Cell. Dev. Biol. 13, 395424.
  • [7]
    Erickson, H.P. (1997) FtsZ, a tubulin homologue in prokaryote division. Trends Cell Biol. 7, 362367.
  • [8]
    Lutkenhaus, J. (1993) FtsZ ring in bacterial cytokinesis. Mol. Microbiol. 9, 403410.
  • [9]
    Lutkenhaus, J., Addinall, S.G. (1997) Bacterial cell division and the Z ring. Ann. Rev. Biochem. 66, 93116.
  • [10]
    Huisman, O., D'Ari, R., Gottesman, S. (1984) Cell division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc. Natl. Acad. Sci. USA 81, 44904494.
  • [11]
    Bi, E., Lutkenhaus, J. (1993) Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175, 11181125.
  • [12]
    Mukherjee, A., Cao, C., Lutkenhaus, J. (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 28852890.
  • [13]
    Trusca, D., Scott, S., Thompson, C., Bramhill, D. (1998) Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J. Bacteriol. 180, 39463953.
  • [14]
    Lu, C., Stricker, J., Erickson, H.P. (1998) FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima– quantitation, GTP hydrolysis, and assembly. Cell Motil. Cytoskeleton 40, 7186.
  • [15]
    Bi, E., Lutkenhaus, J. (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161164.
  • [16]
    Levin, P.A., Losick, R. (1996) Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10, 478488.
  • [17]
    Ma, X., Ehrhardt, D.W., Margolin, W. (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl. Acad. Sci. USA 93, 1299813003.
  • [18]
    Addinall, S.G., Bi, E., Lutkenhaus, J. (1996) FtsZ ring formation in fts mutants. J. Bacteriol. 178, 38773884.
  • [19]
    Pogliano, J., Pogliano, K., Weiss, D.S., Losick, R., Beckwith, J. (1997) Inactivation of FtsIh inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc. Natl. Acad. Sci. USA 94, 559564.
  • [20]
    Wang, X., Lutkenhaus, J. (1996) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol. Microbiol. 21, 313320.
  • [21]
    Sun, Q., Margolin, W. (1998) FtsZ dynamics during the cell division cycle of live Escherichia coli. J. Bacteriol. 180, 20502056.
  • [22]
    de Boer, P., Crossley, R., Rothfield, L. (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254256.
  • [23]
    Mukherjee, A., Lutkenhaus, J. (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 27542758.
  • [24]
    Mukherjee, A., Dai, K., Lutkenhaus, J. (1993) Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl. Acad. Sci. USA 90, 10531057.
  • [25]
    Raychaudhuri, D., Park, J.T. (1992) Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251254.
  • [26]
    Löwe, J., Amos, L.A. (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203206.
  • [27]
    Erickson, H.P., Taylor, D.W., Taylor, K.A., Bramhill, D. (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA 93, 519523.
  • [28]
    Erickson, H.P., Stoffler, D. (1996) Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to α, β, and γ tubulin. J. Cell Biol. 135, 58.
  • [29]
    Yu, X.-C., Margolin, W. (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J. 16, 54555463.
  • [30]
    Bramhill, D., Thompson, C.M. (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl. Acad. Sci. USA 91, 58135817.
  • [31]
    Mukherjee, A., Lutkenhaus, J. (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17, 462469.
  • [32]
    Yu, X.-C., Margolin, W. (1998) Inhibition of assembly of bacterial cell division protein FtsZ by the hydrophobic dye bis-8-anilino-1-naphthalenesulfonate. J. Biol. Chem. 273, 1021610222.
  • [33]
    Yu, X., Margolin, W., Gonzalez-Garay, M.L., Cabral, F. (1999) Vinblastine induces an interaction between FtsZ and tubulin in mammalian cells. J. Cell Sci. 112, 23012311.
  • [34]
    Dai, K., Lutkenhaus, J. (1991) ftsZ is an essential cell division gene in Escherichia coli. J. Bacteriol. 173, 35003506.
  • [35]
    Addinall, S.G., Cao, C., Lutkenhaus, J. (1997) Temperature shift experiments with an ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated. J. Bacteriol. 179, 42774284.
  • [36]
    Bi, E., Lutkenhaus, J. (1990) FtsZ regulates the frequency of cell division in Escherichia coli. J. Bacteriol. 172, 27652768.
  • [37]
    Ward, J.E., Lutkenhaus, J. (1985) Overproduction of FtsZ induces minicells in E. coli. Cell 42, 941949.
  • [38]
    Zhou, P., Helmstetter, C.E. (1994) Relationship between ftsZ gene expression and chromosome replication in Escherichia coli. J. Bacteriol. 176, 61006106.
  • [39]
    Mukherjee, A., Lutkenhaus, J. (1999) Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J. Bacteriol. 181, 823832.
  • [40]
    Britton, R.A., Powell, B.S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J.R., Court, D.L. (1998) Cell cycle arrest in Era GTPase mutants: a potential growth rate regulated checkpoint in Escherichia coli. Mol. Microbiol. 27, 739750.
  • [41]
    Tormo, A., Martinez-Salas, E., Vicente, M. (1980) Involvement of the ftsA gene product in late stages of the Escherichia coli cell cycle. J. Bacteriol. 141, 806813.
  • [42]
    Donachie, W.D., Begg, K.J., Lutkenhaus, J.F., Salmond, G.P.C., Martinez-Salas, E., Vicente, M. (1979) Role of the ftsA gene product in control of Escherichia coli cell division. J. Bacteriol. 140, 388394.
  • [43]
    Bork, P., Sander, C., Valencia, A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89, 72907294.
  • [44]
    Addinall, S.G., Lutkenhaus, J. (1996) FtsA is localized to the septum in an FtsZ-dependent manner. J. Bacteriol. 178, 71677172.
  • [45]
    Ma, X., Sun, Q., Wang, R., Singh, G., Jonietz, E.L., Margolin, W. (1997) Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J. Bacteriol. 179, 67886797.
  • [46]
    Sanchez, M., Valencia, A., Ferrandiz, M.-J., Sandler, C., Vicente, M. (1994) Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J. 13, 49194925.
  • [47]
    Ma, X., Margolin, W. (1999) Genetic and functional analysis of the conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 75317544.
  • [48]
    Din, N., Quardokus, E.M., Sackett, M.J., Brun, Y.V. (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol. Microbiol. 27, 10511063.
  • [49]
    Dai, K., Lutkenhaus, J. (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 61456151.
  • [50]
    Dewar, S.J., Begg, K.J., Donachie, W.D. (1992) Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J. Bacteriol. 174, 63146316.
  • [51]
    Wang, X., Huang, J., Mukherjee, A., Cao, C., Lutkenhaus, J. (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179, 55515559.
  • [52]
    Gayda, R.C., Henk, M.C., Leong, D. (1992) C-shaped cells caused by expression of an ftsA mutation in Escherichia coli. J. Bacteriol. 174, 53625370.
  • [53]
    Margolin, W., unpublished data.
  • [54]
    Hale, C.A., de Boer, P.A. (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175185.
  • [55]
    Hale, C.A., de Boer, P.A. (1999) Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J. Bacteriol. 181, 167176.
  • [56]
    Raychaudhuri, D. (1999) ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J. 18, 23722383.
  • [57]
    Liu, Z., Mukherjee, A., Lutkenhaus, J. (1999) Recruitment of ZipA to the division site by interaction with FtsZ. Mol. Microbiol. 31, 18531861.
  • [58]
    Khattar, M.M., Begg, K.J., Donachie, W.D. (1994) Identification of FtsW and characterization of a new ftsW division mutant of Escherichia coli. J. Bacteriol. 176, 71407147.
  • [59]
    Begg, K.J., Dewar, S.J., Donachie, W.D. (1995) A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177, 62116222.
  • [60]
    Boyle, D.S., Khattar, M.M., Addinall, S.G., Lutkenhaus, J., Donachie, W.D. (1997) ftsW is an essential cell-division gene in Escherichia coli. Mol. Microbiol. 24, 12631273.
  • [61]
    Yu, X.-C., Tran, A.H., Sun, Q., Margolin, W. (1998) Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J. Bacteriol. 180, 12961304.
  • [62]
    Wang, L., Lutkenhaus, J. (1998) FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29, 731740.
  • [63]
    Wang, L., Khattar, M.K., Donachie, W.D., Lutkenhaus, J. (1998) FtsI and FtsW are localized to the septum in Escherichia coli. J. Bacteriol. 180, 28102816.
  • [64]
    Draper, G.C., McLennan, N., Begg, K., Masters, M., Donachie, W.D. (1998) Only the N-terminal domain of FtsK functions in cell division. J. Bacteriol. 180, 46214627.
  • [65]
    Begg, K.J., Takasuga, A., Edwards, D.H., Dewar, S.J., Spratt, B.G., Adachi, H., Ohta, T., Matsuzawa, H., Donachie, W.D. (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172, 66976703.
  • [66]
    Yu, X.C., Weihe, E.K., Margolin, W. (1998) Role of the C-terminus of FtsK in Escherichia coli chromosome segregation. J. Bacteriol. 180, 64246428.
  • [67]
    Liu, G., Draper, G.C., Donachie, W.D. (1998) FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol. Microbiol. 29, 893903.
  • [68]
    Sharpe, M.E., Errington, J. (1995) Postseptational chromosome partitioning in bacteria. Proc. Natl. Acad. Sci. USA 92, 86308634.
  • [69]
    Steiner, W., Liu, G., Donachie, W.D., Kuempel, P. (1999) The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31, 579583.
  • [70]
    Diez, A.A., Farewell, A., Nannmark, U., Nyström, T. (1997) A mutation in the ftsK gene of Escherichia coli affects cell–cell separation, stationary-phase survival, stress adaptation, and expression of the gene encoding the stress protein UspA. J. Bacteriol. 179, 58785883.
  • [71]
    Britton, R.A., Grossman, A.D. (1999) Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181, 58605864.
  • [72]
    Guzman, L.M., Weiss, D.S., Beckwith, J. (1997) Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli. J. Bacteriol. 179, 50945103.
  • [73]
    Dai, K., Xu, Y., Lutkenhaus, J. (1996) Topological characterization of the essential Escherichia coli cell division protein FtsN. J. Bacteriol. 178, 13281334.
  • [74]
    Guzman, L.-M., Barondess, J.J., Beckwith, J. (1992) FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J. Bacteriol. 174, 77167728.
  • [75]
    Adam, M., Fraipont, C., Rhazi, N., Nguyen-Disteche, M., Lakaye, B., Frere, J.M., Devreese, B., Van Beeumen, J., van Heijenoort, Y., van Heijenoort, J., Ghuysen, J.M. (1997) The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate. J. Bacteriol. 179, 60056009.
  • [76]
    Chen, J.C., Weiss, D.S., Ghigo, J.M., Beckwith, J. (1999) Septal localization of FtsQ, an essential cell division protein in Escherichia coli. J. Bacteriol. 181, 521530.
  • [77]
    Weiss, D.S., Chen, J.C., Ghigo, J.M., Boyd, D., Beckwith, J. (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J. Bacteriol. 181, 508520.
  • [78]
    Ghigo, J.M., Weiss, D.S., Chen, J.C., Yarrow, J.C., Beckwith, J. (1999) Localization of FtsL to the Escherichia coli septal ring. Mol. Microbiol. 31, 725737.
  • [79]
    Addinall, S.G., Cao, C., Lutkenhaus, J. (1997) FtsN, A late recruit to the septum in Escherichia coli. Mol. Microbiol. 25, 303309.
  • [80]
    Ghigo, J.M., Beckwith, J. (2000) Cell division in Escherichia coli: Role of FtsL domains in septal localization, function, and oligomerization. J. Bacteriol. 182, 116129.
  • [81]
    Dai, K., Xu, Y., Lutkenhaus, J. (1993) Cloning and characterization of ftsN, an essential cell division gene in Escherichia coli isolated as a multicopy suppressor of ftsa12(ts). J. Bacteriol. 175, 37903797.
  • [82]
    Mengin-Lecreulx, D., Ayala, J., Bouhss, A., van Heijenoort, J., Parquet, C., Hara, H. (1998) Contribution of the Pmra promoter to expression of genes in the Escherichia coli mra cluster of cell envelope biosynthesis and cell division genes. J. Bacteriol. 180, 44064412.
  • [83]
    Young, K., Silver, L.L., Bramhill, D., Cameron, P., Eveland, S.S., Raetz, C.R., Hyland, S.A., Anderson, M.S. (1995) The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J. Biol. Chem. 270, 3038430391.
  • [84]
    Flardh, K., Palacios, P., Vicente, M. (1998) Cell division genes ftsQAZ in Escherichia coli require distant cis- acting signals upstream of ddlB for full expression. Mol. Microbiol. 30, 305315.
  • [85]
    Joseleau-Petit, D., Vinella, D., D'Ari, R. (1999) Metabolic alarms and cell division in Escherichia coli. J. Bacteriol. 181, 914.
  • [86]
    Vicente, M., Gomez, M.J., Ayala, J.A. (1998) Regulation of transcription of cell division genes in the Escherichia coli dcw cluster. Cell Mol. Life Sci. 54, 317324.
  • [87]
    Massidda, O., Anderluzzi, D., Friedli, L., Feger, G. (1998) Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology 144, 30693078.
  • [88]
    Dassain, M., Leroy, A., Colosetti, L., Carol, S., Bouché, J.P. (1999) A new essential gene of the ‘minimal genome’ affecting cell division. Biochimie 81, 889895.
  • [89]
    Bukau, B., Walker, G.C. (1989) Cellular defects caused by deletion of the Escherichia colidnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171, 23372346.
  • [90]
    Guthrie, B., Wickner, W. (1990) Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J. Bacteriol. 172, 55555562.
  • [91]
    Roof, W.D., Fang, H.Q., Young, K.D., Sun, J., Young, R. (1997) Mutational analysis of slyD, an Escherichia coli gene encoding a protein of the FKBP immunophilin family. Mol. Microbiol. 25, 10311046.
  • [92]
    Newman, E.B., Budman, L.I., Chan, E.C., Greene, R.C., Lin, R.T., Woldringh, C.L., D'Ari, R. (1998) Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J. Bacteriol. 180, 36143619.
  • [93]
    Mileykovskaya, E., Sun, Q., Margolin, W., Dowhan, W. (1998) Localization and function of cell division proteins in filamentous Escherichia coli cells lacking phosphatidylethanolamine. J. Bacteriol. 180, 42524257.
  • [94]
    Pogliano, J., Dong, J.M., De Wulf, P., Furlong, D., Boyd, D., Losick, R., Pogliano, K., Lin, E.C. (1998) Aberrant cell division and random FtsZ ring positioning in Escherichia coli cpxA* mutants. J. Bacteriol. 180, 34863490.
  • [95]
    Errington, J. (1996) Determination of cell fate in Bacillus subtilis. Trends Genet. 12, 3134.
  • [96]
    Shapiro, L., Losick, R. (1997) Protein localization and cell fate in bacteria. Science 276, 712718.
  • [97]
    Zhang, L., Higgins, M.L., Piggot, P.J. (1997) The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Microbiol. 25, 10911098.
  • [98]
    Wang, X., Lutkenhaus, J. (1993) The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. Mol. Microbiol. 9, 435442.
  • [99]
    Daniel, R.A., Harry, E.J., Katis, V.L., Wake, R.G., Errington, J. (1998) Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29, 593604.
  • [100]
    Beall, B., Lutkenhaus, J. (1992) Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174, 23982403.
  • [101]
    Beall, B., Lutkenhaus, J. (1991) FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5, 447455.
  • [102]
    Harry, E.J., Partridge, S.R., Weiss, A.S., Wake, R.G. (1994) Conservation of the 168 divIB gene in Bacillus subtilis W23 and B. licheniformis, and evidence for homology to ftsQ of Escherichia coli. Gene 147, 8589.
  • [103]
    Harry, E.J., Wake, R.G. (1997) The membrane-bound cell division protein DivIB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 25, 275283.
  • [104]
    Sharp, M.D., Pogliano, K. (1999) An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc. Natl. Acad. Sci. USA 96, 1455314558.
  • [105]
    Wu, L.J., Errington, J. (1997) Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J. 16, 21612169.
  • [106]
    Levin, P.A., Losick, R. (1994) Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176, 14511459.
  • [107]
    Katis, V.L., Harry, E.J., Wake, R.G. (1997) The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol. Microbiol. 26, 10471055.
  • [108]
    Katis, V.L., Wake, R.G. (1999) Membrane-bound division proteins DivIB and DivIC of Bacillus subtilis function solely through their external domains in both vegetative and sporulation division. J. Bacteriol. 181, 27102718.
  • [109]
    Rowland, S.L., Katis, V.L., Partridge, S.R., Wake, R.G. (1997) DivIB, FtsZ and cell division in Bacillus subtilis. Mol. Microbiol. 23, 295302.
  • [110]
    Quardokus, E., Din, N., Brun, Y.V. (1996) Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc. Natl. Acad. Sci. USA 93, 63146319.
  • [111]
    Kelly, A.J., Sackett, M., Din, N., Quardokus, E., Brun, Y.V. (1998) Cell cycle dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12, 880893.
  • [112]
    Sackett, M.J., Kelly, A.J., Brun, Y.V. (1998) Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. Mol. Microbiol. 28, 421434.
  • [113]
    Higgins, M.L., Shockman, G.D. (1971) Procaryotic cell division with respect to wall and membranes. CRC Crit. Rev. Microbiol. 1, 2972.
  • [114]
    Chou, F.I., Tan, S.T. (1991) Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173, 31843190.
  • [115]
    Murray, R.G., Hall, M., Thompson, B.G. (1983) Cell division in Deinococcus radiodurans and a method for displaying septa. Can. J. Microbiol. 29, 14121423.
  • [116]
    Westling-Haggstrom, B., Elmros, T., Normark, S., Winblad, B. (1977) Growth pattern and cell division in Neisseria gonorrhoeae. J. Bacteriol. 129, 333342.
  • [117]
    Kaneda, S. (1997) Isolation and characterization of autolysin-defective mutants of Staphylococcus aureus that form cell packets. Curr. Microbiol. 34, 354359.
  • [118]
    Begg, K.J., Donachie, W.D. (1998) Division planes alternate in spherical cells of Escherichia coli. J. Bacteriol. 180, 25642567.
  • [119]
    Rockey, D.D. and Matsmoto, A. (2000) The chlamydial developmental cycle, In: Prokaryotic Development (Brun, Y. and Shimkets, L., Eds.), pp. 403–426. American Society for Microbiology, Washington, DC.
  • [120]
    Boleti, H., Benmerah, A., Ojcius, D.M., Cerf-Bensussan, N., Dautry-Varsat, A. (1999) Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth. J. Cell Sci. 112, 14871496.
  • [121]
    Brown, W.J., Rockey, D.D. (2000) Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect. Immun. 68, 708715.
  • [122]
    Romero-Arroyo, C.E., Jordan, J., Peacock, S.J., Willby, M.J., Farmer, M.A., Krause, D.C. (1999) Mycoplasma pneumoniae protein P30 is required for cytadherence and associated with proper cell development. J. Bacteriol. 181, 10791087.
  • [123]
    Miyata, M., Seto, S. (1999) Cell reproduction cycle of mycoplasma. Biochimie 81, 873878.
  • [124]
    Onoda, T., Oshima, A., Nakano, S., Matsuno, A. (1987) Morphology, growth and reversion in a stable L-form of Escherichia coli K12. J. Gen. Microbiol. 133, 527534.
  • [125]
    Doolittle, W.F. J.M. Logsdon Jr. (1998) Archaeal genomics: do archaea have a mixed heritage. Curr. Biol. 8, 209211.
  • [126]
    Margolin, W., Wang, R., Kumar, M. (1996) Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J. Bacteriol. 178, 13201327.
  • [127]
    Baumann, P., Jackson, S.P. (1996) An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. Proc. Natl. Acad. Sci. USA 93, 67266730.
  • [128]
    Faguy, D.M., Doolittle, W.F. (1998) Cytoskeletal proteins: the evolution of cell division. Curr. Biol. 8, 338341.
  • [129]
    Margolin, W., Long, S.R. (1994) Rhizobium meliloti contains a novel second copy of the cell division gene ftsZ. J. Bacteriol. 176, 20332043.
  • [130]
    Faguy, D., Doolittle, W.F. (1999) Lessons from the Aeropyrum pernix genome. Curr. Biol. 9, 883886.
  • [131]
    Bernander, R. (1998) Archaea and the cell cycle. Mol. Microbiol. 29, 955961.
  • [132]
    Lang, B.F., Gray, M.W., Burger, G. (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev. Genet. 33, 351397.
  • [133]
    Lutkenhaus, J. (1998) Organelle division: from coli to chloroplasts. Curr. Biol. 8, 619621.
  • [134]
    Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L., Lee, W.Y. (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial FtsZ. Plant Cell 10, 19912004.
  • [135]
    Strepp, R., Scholz, S., Kruse, S., Speth, V., Reski, R. (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl. Acad. Sci. USA 95, 43684373.
  • [136]
    Kuroiwa, T., Kuroiwa, H., Sakai, A., Takahashi, H., Toda, K., Itoh, R. (1998) The division apparatus of plastids and mitochondria. Int. Rev. Cytol. 181, 141.
  • [137]
    Beech, P.L., Nheu, T., Schultz, T., Herbert, S., Lithgow, T., Gilson, P.R. and McFadden, G.I. (2000) Mitochondrial FtsZ in a chromophyte alga. Science (in press).
  • [138]
    Bleazard, W., McCaffery, J.M., King, E.J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., Shaw, J.M. (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298304.
  • [139]
    Yu, X.-C., Margolin, W. (1999) FtsZ ring clusters in min and partition mutants: Role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol. Microbiol. 32, 315326.
  • [140]
    de Boer, P.A., Crossley, R.E., Rothfield, L.I. (1988) Isolation and properties of minB, a complex genetic locus involved in correct placement of the division site in Escherichia coli. J. Bacteriol. 170, 21062112.
  • [141]
    de Boer, P.A.J., Crossley, R.E., Rothfield, L.I. (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine the proper placement of the division site in Escherichia coli. Cell 56, 641649.
  • [142]
    Jacobs, C., Shapiro, L. (1999) Bacterial cell division: a moveable feast. Proc. Natl. Acad. Sci. USA 96, 58915893.
  • [143]
    Raskin, D.M., DeBoer, P.A.J. (1997) The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 91, 685694.
  • [144]
    Trueba, F.J. (1982) On the precision and accuracy achieved by Escherichia coli cells at fission about their middle. Arch. Microbiol. 131, 5559.
  • [145]
    Raskin, D.M., de Boer, P.A. (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 49714976.
  • [146]
    Raskin, D.M., de Boer, P.A. (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181, 64196424.
  • [147]
    Hu, Z., Mukherjee, A., Pichoff, S., Lutkenhaus, J. (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. USA 96, 1481914824.
  • [148]
    Jaffé, A., D'Ari, R., Hiraga, S. (1988) Minicell-forming mutants of Escherichia coli: production of minicells and anucleate rods. J. Bacteriol. 170, 30943101.
  • [149]
    Åkerlund, T., Bernander, R., Nordström, K. (1992) Cell division in Escherichia coli minB mutants. Mol. Microbiol. 6, 20732083.
  • [150]
    Quisel, J.D., Lin, D.C.-H., Grossman, A.D. (1999) Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell 4, 665672.
  • [151]
    Marston, A.L., Errington, J. (1999) Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4, 673682.
  • [152]
    Levin, P.A., Margolis, P.S., Setlow, P., Losick, R., Sun, D. Identification of Bacillus subtilis genes for septum placement and shape determination,. J. Bacteriol. 174, 1992. 6717
  • [153]
    Marston, A.L., Errington, J. (1999) Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33, 8496.
  • [154]
    Edwards, D.H., Errington, J. (1997) The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24, 905915.
  • [155]
    Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E., Errington, J. (1998) Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12, 34193430.
  • [156]
    Levin, P.A., Shim, J.J., Grossman, A.D. (1998) Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J. Bacteriol. 180, 60486051.
  • [157]
    Levin, P.A., Kurtser, I.G., Grossman, A.D. (1999) Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96, 96429647.
  • [158]
    Gérard, E., Labedan, B., Forterre, P. (1998) Isolation of a minD-like gene in the hyperthermophilic archaeon Pyrococcus AL585, and phylogenetic characterization of related proteins in the three domains of life. Gene 222, 99106.
  • [159]
    Cook, W.R., Rothfield, L.I. (1999) Nucleoid-independent identification of cell division sites in Escherichia coli. J. Bacteriol. 181, 19001905.
  • [160]
    Niki, H., Jaffé, A., Imamura, R., Ogura, T., Hiraga, S. (1991) The new gene mukB codes for a 177-kDa protein with coiled-coil domains involved in chromosome partitioning of Escherichia coli. EMBO J. 10, 183194.
  • [161]
    Sun, Q., Yu, X.-C., Margolin, W. (1998) Assembly of the FtsZ ring at the central division site in the absence of the chromosome. Mol. Microbiol. 29, 491504.
  • [162]
    Woldringh, C.L., Mulder, E., Huls, P.G., Vischer, N. (1991) Toporegulation of bacterial division according to the nucleoid occlusion model. Res. Microbiol. 142, 309320.
  • [163]
    Den Blaauwen, T., Buddelmeijer, N., Aarsman, M.E., Hameete, C.M., Nanninga, N. (1999) Timing of FtsZ assembly in Escherichia coli. J. Bacteriol. 181, 51675175.
  • [164]
    Hiraga, S., Ichinose, C., Niki, H., Yamazoe, M. (1998) Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complexes in E. coli. Mol. Cell 1, 381387.
  • [165]
    Lemon, K.P., Grossman, A.D. (1998) Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282, 15161519.
  • [166]
    Harry, E.J., Rodwell, J., Wake, R.G. (1999) Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol. Microbiol. 33, 3340.
  • [167]
    Bylund, J.E., Haines, M.A., Piggot, P.J., Higgins, M.L. (1993) Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase. J. Bacteriol. 175, 18861890.
  • [168]
    Ward, D., Newton, A. (1997) Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus. Mol. Microbiol. 26, 897910.
  • [169]
    Jensen, R.B., Shapiro, L. (1999) Chromosome segregation during the prokaryotic division cycle. Curr. Opin. Cell Biol. 11, 726731.
  • [170]
    Latch, J.N., Margolin, W. (1997) Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J. Bacteriol. 179, 23732381.
  • [171]
    Wright, R., Stephens, C., Shapiro, L. (1997) The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J. Bacteriol. 179, 58695877.
  • [172]
    Gullbrand, B., Åkerlund, T., Nordström, K. (1999) On the origin of branches in Escherichia coli. J. Bacteriol. 181, 66076614.
  • [173]
    Harold, F.M. (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol. Rev. 54, 381431.
  • [174]
    McCormick, J.R., Losick, R. (1996) Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3. J. Bacteriol. 178 (2), 52955301.
  • [175]
    McCormick, J.R., Su, E.P., Driks, A., Losick, R. (1994) Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14, 243254.
  • [176]
    Yanouri, A., Daniel, R.A., Errington, J., Buchanan, C.E. (1993) Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J. Bacteriol. 175, 76047616.